On natural metrics on tangent bundles of Riemannian manifolds
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation.
There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation.
Classification : 53A55, 53B20, 53C07, 53C20, 53D25
Keywords: Riemannian manifold; tangent bundle; natural operation; $g$-natural metric; Geodesic flow; incompressibility
@article{ARM_2005_41_1_a6,
     author = {Abbassi, Mohamed Tahar Kadaoui and Sarih, Ma\^ati},
     title = {On natural metrics on tangent bundles of {Riemannian} manifolds},
     journal = {Archivum mathematicum},
     pages = {71--92},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142144},
     zbl = {1114.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a6/}
}
TY  - JOUR
AU  - Abbassi, Mohamed Tahar Kadaoui
AU  - Sarih, Maâti
TI  - On natural metrics on tangent bundles of Riemannian manifolds
JO  - Archivum mathematicum
PY  - 2005
SP  - 71
EP  - 92
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a6/
LA  - en
ID  - ARM_2005_41_1_a6
ER  - 
%0 Journal Article
%A Abbassi, Mohamed Tahar Kadaoui
%A Sarih, Maâti
%T On natural metrics on tangent bundles of Riemannian manifolds
%J Archivum mathematicum
%D 2005
%P 71-92
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a6/
%G en
%F ARM_2005_41_1_a6
Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti. On natural metrics on tangent bundles of Riemannian manifolds. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a6/

[1] Abbassi K. M. T.: Note on the classification Theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$. Comment. Math. Univ. Carolin. 45 4 (2004), 591–596. | MR | Zbl

[2] Abbassi K. M. T., Sarih M.: On the differential geometry of the tangent and the tangent sphere bundles with Cheeger-Gromoll metric. preprint.

[3] Abbassi K. M. T., Sarih M.: Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27 (2) (2003), 295–306. | MR | Zbl

[4] Abbassi K. M. T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold. preprint.

[5] Abbassi K. M. T., Sarih M.: On Riemannian $g$-natural metrics of the form $a\cdot g^s +b\cdot g^h +c\cdot g^v$ on the tangent bundle of a Riemannian manifold $(M,g)$ . to appear in Mediter. J. Math.

[6] Besse A. L.: Manifolds all of whose geodesics are closed. Ergeb. Math. (93), Springer-Verlag, Berlin, Heidelberg, New York 1978. | MR | Zbl

[7] Borisenko A. A., Yampol’skii A. L.: Riemannian geometry of fiber bundles. Russian Math. Surveys 46 (6) (1991), 55–106. | MR

[8] Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative curvature. Ann. of Math. (2) 96 (1972), 413–443. | MR | Zbl

[9] Dombrowski P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73–82. | MR | Zbl

[10] Epstein D. B. A.: Natural tensors on Riemannian manifolds. J. Differential Geom. 10 (1975), 631–645. | MR | Zbl

[11] Epstein D. B. A., Thurston W. P.: Transformation groups and natural bundles. Proc. London Math. Soc. 38 (1979), 219–236. | MR | Zbl

[12] Kobayashi S., Nomizu K.: Foundations of differential geometry. Intersci. Pub. New York (I, 1963 and II, 1967). | MR | Zbl

[13] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. | MR | Zbl

[14] Kowalski O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math. 250 (1971), 124–129. | MR

[15] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles -a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. | MR | Zbl

[16] Kowalski O., Sekizawa M.: On tangent sphere bundles with small or large constant radius. Ann. Global Anal. Geom. 18 (2000), 207–219. | MR | Zbl

[17] Krupka D., Janyška J.: Lectures on Differential Invariants. University J. E. Purkyně, Brno 1990. | MR

[18] Musso E., Tricerri F.: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. (4) 150 (1988), 1–20. | MR | Zbl

[19] Nijenhuis A.: Natural bundles and their general properties. in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 317–334. | MR | Zbl

[20] Palais R. S., Terng C. L.: Natural bundles have finite order. Topology 16 (1977), 271–277. | MR | Zbl

[21] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohôku Math. J. (I, 10 (1958) 338–354; II, 14 (1962) 146–155). | MR | Zbl

[22] Sekizawa M.: Curvatures of tangent bundles with Cheeger-Gromoll metric. Tokyo J. Math. 14 (2) (1991), 407–417. | MR | Zbl

[23] Slovák J.: On natural connections on Riemannian manifolds. Comment. Math. Univ. Carolin. 30 (1989), 389–393. | MR | Zbl

[24] Stredder P.: Natural differential operators on Riemannian manifolds and representations of the orthogonal and the special orthogonal groups. J. Differential Geom. 10 (1975), 647–660. | MR

[25] Terng C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–828. | MR | Zbl

[26] Willmore T. J.: An introduction to differential geometry. Oxford Univ. Press 1959. | MR | Zbl

[27] Yano K., Ishihara S.: Tangent and cotangent bundles. Differential Geometry, Marcel Dekker Inc. New York 1973. | MR | Zbl

[28] Yano K., Kobayashi S.: Prolongations of tensor fields and connections to tangent bundles. J. Math. Soc. Japan (I, II, 18, (2–3) (1966), III, 19 (1967)). | Zbl