Gap properties of harmonic maps and submanifolds
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 59-69 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms.
In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms.
Classification : 53C43, 58E20
Keywords: Grassmannian; Gaussian map; mean curvature; the second fundamental form
@article{ARM_2005_41_1_a5,
     author = {Chen, Qun and Zhou, Zhen-Rong},
     title = {Gap properties of harmonic maps and submanifolds},
     journal = {Archivum mathematicum},
     pages = {59--69},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142143},
     zbl = {1112.58013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a5/}
}
TY  - JOUR
AU  - Chen, Qun
AU  - Zhou, Zhen-Rong
TI  - Gap properties of harmonic maps and submanifolds
JO  - Archivum mathematicum
PY  - 2005
SP  - 59
EP  - 69
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a5/
LA  - en
ID  - ARM_2005_41_1_a5
ER  - 
%0 Journal Article
%A Chen, Qun
%A Zhou, Zhen-Rong
%T Gap properties of harmonic maps and submanifolds
%J Archivum mathematicum
%D 2005
%P 59-69
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a5/
%G en
%F ARM_2005_41_1_a5
Chen, Qun; Zhou, Zhen-Rong. Gap properties of harmonic maps and submanifolds. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a5/

[1] Chen W. H.: Geometry of Grassmannian manifolds as submanifolds. (in Chinese), Acta Math. Sinica 31(1) (1998), 46–53. | MR

[2] Chen X. P.: Harmonic maps and Gaussian maps. (in Chinese), Chin. Ann. Math. 4A(4) (1983), 449–456.

[3] Chern S. S., Goldberg S. I.: On the volume decreasing property of a class of real harmonic mappings. Amer. J. Math. 97(1) (1975), 133–147. | MR | Zbl

[4] Chern S. S., doCarmo M., Kobayashi S.: Minimal submanifolds of a sphere with second fundamental form of constant length. Funct. Anal. Rel. Fields (1970), 59–75. | MR

[5] Eells J., Lemaire L.: Selected topics on harmonic maps. Expository Lectures from the CBMS Regional Conf. held at Tulane Univ., Dec. 15–19, 1980.

[6] Ruh E. A. Vilms J.: The tension field of the Gauss map. Trans. Amer. Math. Soc. 149 (1970), 569–573. | MR

[7] Sealey H. C. J.: Harmonic maps of small energy. Bull. London Math. Soc. 13 (1981), 405–408. | MR | Zbl

[8] Takahashi T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan. 18 (1966), 380–385. | MR | Zbl

[9] Wu G. R., Chen W. H.: An inequality on matrix and its geometrical application. (in Chinese), Acta Math. Sinica 31(3) (1988), 348–355. | MR

[10] Yano K., Kon M.: Structures on Manifolds. Series in Pure Math. 3 (1984), World Scientific. | MR | Zbl