Stability of hydrodynamic model for semiconductor
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 37-58 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.
In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.
Classification : 35B35, 35L50, 35L60, 35L67, 35S50, 76H05, 76X05, 82D37
Keywords: transonic shock waves; stability; hydrodynamic models; semiconductors
@article{ARM_2005_41_1_a4,
     author = {Rosini, Massimiliano Daniele},
     title = {Stability of hydrodynamic model for semiconductor},
     journal = {Archivum mathematicum},
     pages = {37--58},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142142},
     zbl = {1112.35020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a4/}
}
TY  - JOUR
AU  - Rosini, Massimiliano Daniele
TI  - Stability of hydrodynamic model for semiconductor
JO  - Archivum mathematicum
PY  - 2005
SP  - 37
EP  - 58
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a4/
LA  - en
ID  - ARM_2005_41_1_a4
ER  - 
%0 Journal Article
%A Rosini, Massimiliano Daniele
%T Stability of hydrodynamic model for semiconductor
%J Archivum mathematicum
%D 2005
%P 37-58
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a4/
%G en
%F ARM_2005_41_1_a4
Rosini, Massimiliano Daniele. Stability of hydrodynamic model for semiconductor. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 37-58. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a4/

[1] Asher U. M., Markowich P. A., Pietra P., Schmeiser C.: A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math. Models Appl. Sci. 1 (1991), 347–376. | MR

[2] Bony J. M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partialles non linéaires. Ann. Sci. Ec. Norm. Sup. Paris 14 (1981), 209–246. | MR

[3] Bony J. M.: Analyse microlocale des équations aux dérivées partialles non linéaries. Microlocal Analysis and Applications, Montecatini Terme, Lecture Notes in Mathematics 1495 (1989), 1–45. | MR

[4] Chen Z., Harumi H.: Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species. J. Differential Equations 166 no. 1 (2000), 1–32. | MR | Zbl

[5] Coifman R. R., Meyer Y.: Au delá des opérateurs pseudo-différentiels. Astérisque 57, 1978, 185 pp. | MR | Zbl

[6] Chazarain J., Piriou A.: Introduction to the theory of linear partial differential equations. Studies in Mathematics and Its Applications, Vol. 14, Amsterdam-New York-Oxford, 1982. | MR | Zbl

[7] Godlewski E., Raviart P. A.: Numerical approximation of hyperbolic systems of conservation laws. Applied Mathematical Sciences 118, New York-Springer 1996. | MR | Zbl

[8] Kreiss H. O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. XXIII (1970), 277–288. | MR | Zbl

[9] Li H., Markowich P. A., Mei M.: Asymptotic behavior of solutions of the hydrodynamic model of semiconductors. Proc. Royal Soc. Edinburgh 132A (2000), 359–378. | MR

[10] Majda A.: Smooth solutions for the equations of compressible on incompressible fluid flow. Lecture Notes in Math., Springer-Verlag 1047 (1982), 75–124. | MR

[11] Majda A.: The stability of multi-dimensional shock fronts. Mem. Amer. Math. Soc. 275 (1983), 95p. | Zbl

[12] Majda A.: The existence of multidimensional shocks. Mem. Amer. Math. Soc. 281 (1983), 92p. | MR

[13] Majda A.: Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci., Springer-Verlag, New York 53 (1984), 159p. | MR | Zbl

[14] Marcati P., Mei M., (to appear) : Asymptotic convergence to steady-state solutions for solutions of the initial boundary problem to a hydrodynamic model for semiconductors. to appear.

[15] Marcati P., Natalini R.: Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal. 129, no.2 (1995), 129–145. | MR | Zbl

[16] Marcati P., Natalini R., (1995) : Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem. Proc. Roy. Soc. Edinburgh Sect. A 125, no.1 (1995), 115–131. | MR

[17] Markowich P. A.: Kinetic models for semiconductors. In “Nonequilibrium problems in many-particle systems" (Montecatini, 1992), Lecture Notes in Math., Springer, Berlin 1551 (1993), 87–111. | MR

[18] Métivier G., (2001) : Stability of multidimensional shocks, Advances in the theory of shock waves. Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, 47 (2001), 25–103. | MR

[19] Meyer Y.: Remarques sur un théorème de J. M. Bony. Rend. Circ. Mat. Palermo, Suppl., Serie II. 1 (1981), 1–20. | MR | Zbl