Conformally flat semi-symmetric spaces
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 27-36 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain the complete classification of conformally flat semi-symmetric spaces.
We obtain the complete classification of conformally flat semi-symmetric spaces.
Classification : 53C15, 53C25, 53C35
Keywords: conformally flat manifolds; semi-symmetric spaces
@article{ARM_2005_41_1_a3,
     author = {Calvaruso, Giovanni},
     title = {Conformally flat semi-symmetric spaces},
     journal = {Archivum mathematicum},
     pages = {27--36},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142141},
     zbl = {1114.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/}
}
TY  - JOUR
AU  - Calvaruso, Giovanni
TI  - Conformally flat semi-symmetric spaces
JO  - Archivum mathematicum
PY  - 2005
SP  - 27
EP  - 36
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/
LA  - en
ID  - ARM_2005_41_1_a3
ER  - 
%0 Journal Article
%A Calvaruso, Giovanni
%T Conformally flat semi-symmetric spaces
%J Archivum mathematicum
%D 2005
%P 27-36
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/
%G en
%F ARM_2005_41_1_a3
Calvaruso, Giovanni. Conformally flat semi-symmetric spaces. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/

[B] Boeckx E.: Einstein-like semi-symmetric spaces. Arch. Math. (Brno) 29 (1993), 235–240. | MR | Zbl

[BC] Boeckx E., Calvaruso G.: When is the unit tangent sphere bundle semi-symmetric?. preprint 2002. | MR | Zbl

[BKV] Boeckx E., Kowalski O., and Vanhecke L.: Riemannian manifolds of conullity two. World Scientific 1996. | MR

[CV] Calvaruso G., Vanhecke L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115. | MR | Zbl

[HSk] Hashimoto N., Sekizawa M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR | Zbl

[K] Kurita M.: On the holonomy group of the conformally flat Riemannian manifold. Nagoya Math. J. 9 (1975), 161–171. | MR

[R] Ryan P.: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. | MR

[S] Szabó Y. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$. I, the local version, J. Differential Geom. 17 (1982), 531–582. | MR

[T] Takagi H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. | MR