Keywords: conformally flat manifolds; semi-symmetric spaces
@article{ARM_2005_41_1_a3,
author = {Calvaruso, Giovanni},
title = {Conformally flat semi-symmetric spaces},
journal = {Archivum mathematicum},
pages = {27--36},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2142141},
zbl = {1114.53027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/}
}
Calvaruso, Giovanni. Conformally flat semi-symmetric spaces. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a3/
[B] Boeckx E.: Einstein-like semi-symmetric spaces. Arch. Math. (Brno) 29 (1993), 235–240. | MR | Zbl
[BC] Boeckx E., Calvaruso G.: When is the unit tangent sphere bundle semi-symmetric?. preprint 2002. | MR | Zbl
[BKV] Boeckx E., Kowalski O., and Vanhecke L.: Riemannian manifolds of conullity two. World Scientific 1996. | MR
[CV] Calvaruso G., Vanhecke L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115. | MR | Zbl
[HSk] Hashimoto N., Sekizawa M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR | Zbl
[K] Kurita M.: On the holonomy group of the conformally flat Riemannian manifold. Nagoya Math. J. 9 (1975), 161–171. | MR
[R] Ryan P.: A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. | MR
[S] Szabó Y. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$. I, the local version, J. Differential Geom. 17 (1982), 531–582. | MR
[T] Takagi H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108. | MR