Projective reparametrization of homogeneous curves
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 129-133 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the conditions when locally homogeneous curves in homogeneous spaces admit a natural projective parameter. In particular, we prove that this is always the case for trajectories of homogeneous nilpotent elements in parabolic spaces. On algebraic level this corresponds to the generalization of Morozov–Jacobson theorem to graded semisimple Lie algebras.
We study the conditions when locally homogeneous curves in homogeneous spaces admit a natural projective parameter. In particular, we prove that this is always the case for trajectories of homogeneous nilpotent elements in parabolic spaces. On algebraic level this corresponds to the generalization of Morozov–Jacobson theorem to graded semisimple Lie algebras.
Classification : 17B20, 17B70, 53C30
Keywords: homogeneous submanifold; symmetry algebra; nilpotent elements; $sl_2$-tripple
@article{ARM_2005_41_1_a11,
     author = {Doubrov, Boris},
     title = {Projective reparametrization of homogeneous curves},
     journal = {Archivum mathematicum},
     pages = {129--133},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2142149},
     zbl = {1122.53029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/}
}
TY  - JOUR
AU  - Doubrov, Boris
TI  - Projective reparametrization of homogeneous curves
JO  - Archivum mathematicum
PY  - 2005
SP  - 129
EP  - 133
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/
LA  - en
ID  - ARM_2005_41_1_a11
ER  - 
%0 Journal Article
%A Doubrov, Boris
%T Projective reparametrization of homogeneous curves
%J Archivum mathematicum
%D 2005
%P 129-133
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/
%G en
%F ARM_2005_41_1_a11
Doubrov, Boris. Projective reparametrization of homogeneous curves. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 129-133. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/

[1] Bourbaki N.: Éléments de mathématique, Fasc. XXXVIII: Groupes et algèbres de Lie. Chap. VII: Sous-algèbres de Cartan, éléments réguliers. Chap. VIII: Algèbres de Lie semi-simples déployées. Actualités scientifiques et industrielles, 1364, Paris, Hermann 1975. | MR | Zbl

[2] Cap A., Slovák J., Žádník V.: On distinguished curves in parabolic geometries. Transform. Groups 9 (2004), 143–166. | MR | Zbl

[3] Doubrov B., Komrakov B., Rabinovich M.: Homogeneous surfaces in three-dimensional affine geometry. In: Geometry and topology of submanifolds, VIII, Singapore, World Scientific 1996, 168–178. | MR

[4] Doubrov B., Komrakov B.: Classification of homogeneous submanifolds in homogeneous spaces. Lobachevskii Journal of Mathematics 3 (1999), 19–38. | MR | Zbl

[5] Eastwood M., Slovák J.: Preferred parametrizations on homogeneous curves. arXiv: math.DG/0311456.

[6] Hermann R.: Sophus Lie’s 1880 transformation group paper. Math. Sci. Press Brookline 1975. | MR | Zbl

[7] Jacobson N.: Lie algebras. Intersci. Tracts in Pure and Appl. Math. 10, New-York–London, John Wiley and Sons 1962. | MR | Zbl

[8] Lie S.: Theorie der Transformationgruppen. Bd. 3, Leipzig, Teubner, 1893.

[9] Vinberg E.: Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra. Sel. Math. Sov. 6 (1987), 15–35. | Zbl