Keywords: homogeneous submanifold; symmetry algebra; nilpotent elements; $sl_2$-tripple
@article{ARM_2005_41_1_a11,
author = {Doubrov, Boris},
title = {Projective reparametrization of homogeneous curves},
journal = {Archivum mathematicum},
pages = {129--133},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2142149},
zbl = {1122.53029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/}
}
Doubrov, Boris. Projective reparametrization of homogeneous curves. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 129-133. http://geodesic.mathdoc.fr/item/ARM_2005_41_1_a11/
[1] Bourbaki N.: Éléments de mathématique, Fasc. XXXVIII: Groupes et algèbres de Lie. Chap. VII: Sous-algèbres de Cartan, éléments réguliers. Chap. VIII: Algèbres de Lie semi-simples déployées. Actualités scientifiques et industrielles, 1364, Paris, Hermann 1975. | MR | Zbl
[2] Cap A., Slovák J., Žádník V.: On distinguished curves in parabolic geometries. Transform. Groups 9 (2004), 143–166. | MR | Zbl
[3] Doubrov B., Komrakov B., Rabinovich M.: Homogeneous surfaces in three-dimensional affine geometry. In: Geometry and topology of submanifolds, VIII, Singapore, World Scientific 1996, 168–178. | MR
[4] Doubrov B., Komrakov B.: Classification of homogeneous submanifolds in homogeneous spaces. Lobachevskii Journal of Mathematics 3 (1999), 19–38. | MR | Zbl
[5] Eastwood M., Slovák J.: Preferred parametrizations on homogeneous curves. arXiv: math.DG/0311456.
[6] Hermann R.: Sophus Lie’s 1880 transformation group paper. Math. Sci. Press Brookline 1975. | MR | Zbl
[7] Jacobson N.: Lie algebras. Intersci. Tracts in Pure and Appl. Math. 10, New-York–London, John Wiley and Sons 1962. | MR | Zbl
[8] Lie S.: Theorie der Transformationgruppen. Bd. 3, Leipzig, Teubner, 1893.
[9] Vinberg E.: Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra. Sel. Math. Sov. 6 (1987), 15–35. | Zbl