Keywords: $p$-Laplace equations; radial solution; regular/singular ground state; Fowler inversion; invariant manifold
@article{ARM_2004_40_4_a9,
author = {Franca, Matteo},
title = {Classification of positive solutions of $p${-Laplace} equation with a growth term},
journal = {Archivum mathematicum},
pages = {415--434},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129963},
zbl = {1110.37018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a9/}
}
Franca, Matteo. Classification of positive solutions of $p$-Laplace equation with a growth term. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 415-434. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a9/
[1] Battelli F., Johnson R.: Singular ground states of the scalar curvature equation in ${\mathbb{R}}^n$. Differential Integral Equations 14 (2000), 123–139. | MR
[2] Battelli F., Johnson R.: On positive solutions of the scalar curvature equation when the curvature has variable sign. Nonlinear Anal. 47 (2001), 1029–1037. | MR | Zbl
[3] Battelli F., Johnson R.: On transversal smoothness of invariant manifold. Comm. Appl. Nonlinear Anal. 5 (2001), 383–401. | MR
[4] Damascelli L., Pacella F., Ramaswamy M.: Symmetry of ground states of $p$-Laplace equations via the Moving Plane Method. Arch. Rational Mech. Anal. 148 (1999), 291–308. | MR | Zbl
[5] Franca M.: Some results on the $m$-Laplace equations with two growth terms. preprint. | MR | Zbl
[6] Gazzola F.: Critical exponents which relate embedding inequalities with quasilinear elliptic operator. preprint.
[7] Gazzola F., Serrin J., Tang M.: Existence of ground states and free boundary problem for quasilinear elliptic operators. Adv. Differential Equations 5 (2000), 1–30. | MR
[8] Johnson R.: Concerning a theorem of Sell. J. Differential Equations 30 (1978), 324–339. | MR
[9] Johnson R., Pan X. B., Yi Y. F.: The Melnikov method and elliptic equation with critical exponent. Indiana J. Math. 43 (1994), 1045–1077. | MR
[10] Johnson R., Pan X. B., Yi Y. F.: Singular ground states of semilinear elliptic equations via invariant manifold theory. Nonlinear Anal. 20 (1993), 1279–1302. | MR
[11] Kawano N., Yanagida N., Yotsutani S.: Structure theorems for positive radial solutions to $\operatorname{div}(|Du|^{m-2}Du)+K(|x|)u^q=0$ in $\mathbb{R}^n$. J. Math. Soc. Japan 45 (1993), 719–742. | MR
[12] Ni W. M., Serrin J.: Nonexistence theorems for quasilinear partial differential equations. Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985), 171–185. | MR