Keywords: syntactic semilattice-ordered monoid; conjunctive varieties of rational languages
@article{ARM_2004_40_4_a7,
author = {Pol\'ak, Libor},
title = {A classification of rational languages by semilattice-ordered monoids},
journal = {Archivum mathematicum},
pages = {395--406},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129961},
zbl = {1112.68098},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a7/}
}
Polák, Libor. A classification of rational languages by semilattice-ordered monoids. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 395-406. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a7/
[1] Almeida J.: Finite Semigroups and Universal Algebra. World Scientific, 1994. | MR | Zbl
[2] Eilenberg S.: Automata, Languages and Machines. Vol. B, Academic Press, 1976. | MR | Zbl
[3] Myhill J.: Finite automata and the representation of events. WADD Techn. Report 57–624, Wright Patterson Air Force Base, 1957.
[4] Pin J.-E.: Varieties of Formal Languages. Plenum, 1986. | MR | Zbl
[5] Pin J.-E.: A variety theorem without complementation. Izvestiya VUZ Matematika 39 (1995), 80–90. English version: Russian Mathem. (Iz. VUZ) 39 (1995), 74–83. | MR
[6] Polák L.: Syntactic semiring of a language. in Proc. Mathematical Foundation of Computer Science 2001, Lecture Notes in Comput. Sci., Vol. 2136 (2001), 611–620. | Zbl
[7] Polák L.: Operators on Classes of Regular Languages. in Algorithms, Automata and Languages, J.P.G. Gomes and P. Silva (ed.), World Scientific (2002), 407–422. | MR
[8] Polák L.: Syntactic Semiring and Language Equations. in Proc. of the Seventh International Conference on Implementation and Application of Automata, Tours 2002, Lecture Notes in Comput. Sci., Vol. 2608 (2003), 182–193. | MR
[9] Straubing H.: On logical descriptions of regular languages. in Proc. LATIN 2002, Lecture Notes in Comput. Sci., Vol. 2286 (2002), 528–538. | MR | Zbl