Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 367-381 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
Classification : 34B15, 39A11, 39A12
Keywords: multiple solutions; singular; existence; discrete boundary value problem
@article{ARM_2004_40_4_a5,
     author = {Jiang, Daqing and Zhang, Lili and O'Regan, Donal and Agarwal, Ravi P.},
     title = {Existence theory for single and multiple solutions to singular positone discrete {Dirichlet} boundary value problems to the one-dimension $p${-Laplacian}},
     journal = {Archivum mathematicum},
     pages = {367--381},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129959},
     zbl = {1113.39022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/}
}
TY  - JOUR
AU  - Jiang, Daqing
AU  - Zhang, Lili
AU  - O'Regan, Donal
AU  - Agarwal, Ravi P.
TI  - Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
JO  - Archivum mathematicum
PY  - 2004
SP  - 367
EP  - 381
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/
LA  - en
ID  - ARM_2004_40_4_a5
ER  - 
%0 Journal Article
%A Jiang, Daqing
%A Zhang, Lili
%A O'Regan, Donal
%A Agarwal, Ravi P.
%T Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
%J Archivum mathematicum
%D 2004
%P 367-381
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/
%G en
%F ARM_2004_40_4_a5
Jiang, Daqing; Zhang, Lili; O'Regan, Donal; Agarwal, Ravi P. Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 367-381. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/

[1] Agarwal R. P., O’Regan D.: Singular discrete boundary value problems. Appl. Math. Lett. 12 (1999), 127–131. | MR | Zbl

[2] Agarwal R. P., O’Regan D.: Boundary value problems for discrete equations. Appl. Math. Lett. 10 (1997), 83–89. | MR | Zbl

[3] Agarwal R. P., O’Regan D.: Singular discrete $(n,p)$ boundary value problems. Appl. Math. Lett. 12 (1999), 113–119. | MR | Zbl

[4] Agarwal R. P., O’Regan D.: Nonpositive discrete boundary value problems. Nonlinear Anal. 39 (2000), 207–215. | MR

[5] Agarwal R. P., O’Regan D.: Existence theorem for single and multiple solutions to singular positone boundary value problems. J. Differential Equations, 175 (2001), 393–414. | MR

[6] Agarwal R. P., O’Regan D.: Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240 (1999), 433–445. | MR

[7] Agarwal R. P., O’Regan D.: Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. | MR | Zbl

[8] Agarwal R. P., O’Regan D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems. J. Differential Equations 170 (2001), 142–156. | MR | Zbl

[9] Deimling K.: Nonlinear functional analysis. Springer Verlag, 1985. | MR | Zbl

[10] Henderson J.: Singular boundary value problems for difference equations. Dynam. Systems Appl. (1992), 271–282. | MR | Zbl

[11] Henderson J.: Singular boundary value problems for higher order difference equations. In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. | MR

[12] Jiang D. Q.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs. Comput. Math. Appl. 40 (2000), 249–259. | MR | Zbl

[13] Jiang D. Q., Pang P. Y. H., Agarwal R. P.: Upper and lower solutions method and a superlinear singular discrete boundary value problem. Dynam. Systems Appl., to appear. | MR

[14] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic, Dordrecht, 1997. | MR | Zbl