Keywords: multiple solutions; singular; existence; discrete boundary value problem
@article{ARM_2004_40_4_a5,
author = {Jiang, Daqing and Zhang, Lili and O'Regan, Donal and Agarwal, Ravi P.},
title = {Existence theory for single and multiple solutions to singular positone discrete {Dirichlet} boundary value problems to the one-dimension $p${-Laplacian}},
journal = {Archivum mathematicum},
pages = {367--381},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129959},
zbl = {1113.39022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/}
}
TY - JOUR AU - Jiang, Daqing AU - Zhang, Lili AU - O'Regan, Donal AU - Agarwal, Ravi P. TI - Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian JO - Archivum mathematicum PY - 2004 SP - 367 EP - 381 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/ LA - en ID - ARM_2004_40_4_a5 ER -
%0 Journal Article %A Jiang, Daqing %A Zhang, Lili %A O'Regan, Donal %A Agarwal, Ravi P. %T Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian %J Archivum mathematicum %D 2004 %P 367-381 %V 40 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/ %G en %F ARM_2004_40_4_a5
Jiang, Daqing; Zhang, Lili; O'Regan, Donal; Agarwal, Ravi P. Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 367-381. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a5/
[1] Agarwal R. P., O’Regan D.: Singular discrete boundary value problems. Appl. Math. Lett. 12 (1999), 127–131. | MR | Zbl
[2] Agarwal R. P., O’Regan D.: Boundary value problems for discrete equations. Appl. Math. Lett. 10 (1997), 83–89. | MR | Zbl
[3] Agarwal R. P., O’Regan D.: Singular discrete $(n,p)$ boundary value problems. Appl. Math. Lett. 12 (1999), 113–119. | MR | Zbl
[4] Agarwal R. P., O’Regan D.: Nonpositive discrete boundary value problems. Nonlinear Anal. 39 (2000), 207–215. | MR
[5] Agarwal R. P., O’Regan D.: Existence theorem for single and multiple solutions to singular positone boundary value problems. J. Differential Equations, 175 (2001), 393–414. | MR
[6] Agarwal R. P., O’Regan D.: Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240 (1999), 433–445. | MR
[7] Agarwal R. P., O’Regan D.: Twin solutions to singular boundary value problems. Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. | MR | Zbl
[8] Agarwal R. P., O’Regan D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems. J. Differential Equations 170 (2001), 142–156. | MR | Zbl
[9] Deimling K.: Nonlinear functional analysis. Springer Verlag, 1985. | MR | Zbl
[10] Henderson J.: Singular boundary value problems for difference equations. Dynam. Systems Appl. (1992), 271–282. | MR | Zbl
[11] Henderson J.: Singular boundary value problems for higher order difference equations. In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. | MR
[12] Jiang D. Q.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs. Comput. Math. Appl. 40 (2000), 249–259. | MR | Zbl
[13] Jiang D. Q., Pang P. Y. H., Agarwal R. P.: Upper and lower solutions method and a superlinear singular discrete boundary value problem. Dynam. Systems Appl., to appear. | MR
[14] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluwer Academic, Dordrecht, 1997. | MR | Zbl