Oscillation of solutions of non-linear neutral delay differential equations of higher order for $p(t)=\pm 1$
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 359-366
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the oscillation criteria for solutions of the neutral delay differential equation (NDDE) \[ \left( {y(t)-p(t)\, y({t-\tau } )} \right)^{(n )}+ \alpha \,Q(t)\,\,G\left( {y({t-\sigma })} \right)= f(t) \] has been studied where $p(t) = 1$ or $p(t) \le 0$, $\alpha =\pm 1$, $Q\in C \left([0, \infty ), R^{+}\right)$, $f \in C([0, \infty ), R)$, $G \in C(R, R)$. This work improves and generalizes some recent results and answer some questions that are raised in [1].
In this paper, the oscillation criteria for solutions of the neutral delay differential equation (NDDE) \[ \left( {y(t)-p(t)\, y({t-\tau } )} \right)^{(n )}+ \alpha \,Q(t)\,\,G\left( {y({t-\sigma })} \right)= f(t) \] has been studied where $p(t) = 1$ or $p(t) \le 0$, $\alpha =\pm 1$, $Q\in C \left([0, \infty ), R^{+}\right)$, $f \in C([0, \infty ), R)$, $G \in C(R, R)$. This work improves and generalizes some recent results and answer some questions that are raised in [1].
Classification : 34K11, 34K40
Keywords: oscillation; non-oscillation; neutral equations; asymptotic-behaviour
@article{ARM_2004_40_4_a4,
     author = {Rath, R. N. and Padhy, L. N. and Misra, N.},
     title = {Oscillation of solutions of non-linear neutral delay differential equations of higher order for $p(t)=\pm 1$},
     journal = {Archivum mathematicum},
     pages = {359--366},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129958},
     zbl = {1116.34332},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a4/}
}
TY  - JOUR
AU  - Rath, R. N.
AU  - Padhy, L. N.
AU  - Misra, N.
TI  - Oscillation of solutions of non-linear neutral delay differential equations of higher order for $p(t)=\pm 1$
JO  - Archivum mathematicum
PY  - 2004
SP  - 359
EP  - 366
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a4/
LA  - en
ID  - ARM_2004_40_4_a4
ER  - 
%0 Journal Article
%A Rath, R. N.
%A Padhy, L. N.
%A Misra, N.
%T Oscillation of solutions of non-linear neutral delay differential equations of higher order for $p(t)=\pm 1$
%J Archivum mathematicum
%D 2004
%P 359-366
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a4/
%G en
%F ARM_2004_40_4_a4
Rath, R. N.; Padhy, L. N.; Misra, N. Oscillation of solutions of non-linear neutral delay differential equations of higher order for $p(t)=\pm 1$. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 359-366. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a4/

[1] Gyori I., Ladas G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991. | MR

[2] Hilderbrandt T. H.: Introduction to the Theory of Integration. Academic Press, New York, 1963. | MR

[3] Ladde G. S., Lakshmikantham V., Zhang B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker INC, New York, 1987. | MR | Zbl

[4] Liu X. Z., al: Oscillation and non-oscillation for a class of neutral differential equations. Differential Equations Dynam. Systems 1 (1993), 197–204. | MR

[5] Malik S. C., Arora S.: Mathematical Analysis. New Age International (p) Ltd. Publishers New Delhi, 2001.

[6] Parhi N., Rath R. N.: On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations. Proc. Indian Acad. Sci. (Math. Sci.) 111 (2001), 337–350. | MR | Zbl

[7] Parhi N., Rath R. N.: On oscillation of solutions of forced non-linear neutral differential equations of higher order – II. Ann. Polon. Math. 81 (2003), 101–110. | MR

[8] Parhi N., Rath R. N.: Oscillatory behaviour of solutions of non-linear higher order neutral differential equations. Math. Bohem. 129 (2004), 11–27. | MR

[9] Rath R. N.: Oscillatory and asymptotic behaviour of solutions of higher order neutral equations. Bull. Inst. Math. Acad. Sinica 30 (2003), 219–228. | MR

[10] Yu J. S., al: Oscillation of neutral delay differential equation. Bull. Austral. Math. Soc. 45 (1992), 195–200.