On product of projections
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 355-357 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An operator with infinite dimensional kernel is positive iff it is a positive scalar times a certain product of three projections.
An operator with infinite dimensional kernel is positive iff it is a positive scalar times a certain product of three projections.
Classification : 47A05, 47A68, 47B15
Keywords: projection; positive operator; factorization
@article{ARM_2004_40_4_a3,
     author = {Moslehian, Mohammad Sal},
     title = {On product of projections},
     journal = {Archivum mathematicum},
     pages = {355--357},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129957},
     zbl = {1109.47302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a3/}
}
TY  - JOUR
AU  - Moslehian, Mohammad Sal
TI  - On product of projections
JO  - Archivum mathematicum
PY  - 2004
SP  - 355
EP  - 357
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a3/
LA  - en
ID  - ARM_2004_40_4_a3
ER  - 
%0 Journal Article
%A Moslehian, Mohammad Sal
%T On product of projections
%J Archivum mathematicum
%D 2004
%P 355-357
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a3/
%G en
%F ARM_2004_40_4_a3
Moslehian, Mohammad Sal. On product of projections. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 355-357. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a3/

[1] Fong C. K., Wu P. Y.: Diagonal operators: dilation, sum and product. Acta Sci. Math. (Szeged) 57 (1993), No. 1-4, 125–138. | MR | Zbl

[2] Halmos P. R.: Products of shifts. Duke Math. J. 39 (1972), 779–787. | MR | Zbl

[3] Halmos P. R., Kakutani S.: Products of symmetries. Bull. Amer. Math. Soc. 64 (1958), 77–78. | MR | Zbl

[4] Hawkins J. B., Kammerer W. J.: A class of linear transformations which can be written as the product of projections. Proc. Amer. Math. Soc. 19 (1968), 739–745. | MR

[5] Phillips N. C.: Every invertible Hilbert space operator is a product of seven positive operators. Canad. Math. Bull. 38 (1995), no. 2, 230–236. | MR | Zbl

[6] Radjavi H.: On self-adjoint factorization of operators. Canad. J. Math. 21 (1969), 1421–1426. | MR | Zbl

[7] Radjavi H.: Products of hermitian matrices and symmetries. Proc. Amer. Math. Soc. 21 (1969), 369–372; 26 (1970), 701. | MR | Zbl

[8] Wu P. Y.: Product of normal operators. Canad. J. Math. XL, No 6 (1988), 1322–1330. | MR

[9] Wu P. Y.: The operator factorization problems. Lin. Appl. 117 (1989), 35–63. | MR | Zbl