Keywords: fixed point; modular spaces; $\rho $-nonexpansive mapping; $\rho $-normal structure; $\rho $-uniform normal structure; $\rho _r$-uniformly convex
@article{ARM_2004_40_4_a2,
author = {Kumam, Poom},
title = {Fixed point theorems for nonexpansive mappings in modular spaces},
journal = {Archivum mathematicum},
pages = {345--353},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129956},
zbl = {1117.47045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/}
}
Kumam, Poom. Fixed point theorems for nonexpansive mappings in modular spaces. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 345-353. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/
[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory. Spinger-Verlag, Heidelberg, New York 1990. | MR | Zbl
[2] Ayerbe Toledano J. M., Dominguez Benavides T., and López Acedo G.: Measures of noncompactness in metric fixed point theory: Advances and Applications Topics in metric fixed point theory. Birkhäuser-Verlag, Basel, 99 (1997). | MR
[3] Chen S., Khamsi M. A., Kozlowski W. M.: Some geometrical properties and fixed point theorems in Orlicz modular spaces. J. Math. Anal. Appl. 155 No. 2 (1991), 393–412. | MR
[4] Dominguez Benavides T., Khamsi M. A., Samadi S.: Uniformly Lipschitzian mappings in modular function spaces. Nonlinear Analysis 40 No. 2 (2001), 267–278. | MR
[5] Goebel K., Kirk W. A.: Topic in metric fixed point theorem. Cambridge University Press, Cambridge 1990. | MR
[6] Goebel K., Reich S.: Uniform convexity, Hyperbolic geometry, and nonexpansive mappings. Monographs textbooks in pure and applied mathematics, New York and Basel, 83 1984. | MR | Zbl
[7] Khamsi M. A.: Fixed point theory in modular function spacesm. Recent Advances on Metric Fixed Point Theorem, Universidad de Sivilla, Sivilla No. 8 (1996), 31–58. | MR
[8] Khamsi M. A.: Uniform noncompact convexity, fixed point property in modular spaces. Math. Japonica 41 (1) (1994), 1–6. | MR | Zbl
[9] Khamsi M. A.: A convexity property in modular function spaces. Math. Japonica 44, No. 2 (1990). | MR
[10] Khamsi M. A., Kozlowski W. M., Reich S.: Fixed point property in modular function spaces. Nonlinear Analysis, 14, No. 11 (1990), 935–953. | MR
[11] Kumam P.: Fixed Point Property in Modular Spaces. Master Thesis, Chiang Mai University (2002), Thailand.
[12] Megginson R. E.: An introduction to Banach space theory. Graduate Text in Math. Springer-Verlag, New York 183 (1998). | MR | Zbl
[13] Musielak J.: Orlicz spaces and Modular spaces. Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York 1034 (1983). | MR | Zbl
[14] Musielak J., Orlicz W.: On Modular spaces. Studia Math. 18 (1959), 591–597. | MR | Zbl
[15] Nakano H.: Modular semi-ordered spaces. Tokyo, (1950).