Fixed point theorems for nonexpansive mappings in modular spaces
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 345-353 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if $\rho $ is a convex, $\rho $-complete modular space satisfying the Fatou property and $\rho _r$-uniformly convex for all $r>0$, C a convex, $\rho $-closed, $\rho $-bounded subset of $X_\rho $, $T:C\rightarrow C$ a $\rho $-nonexpansive mapping, then $T$ has a fixed point.
In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if $\rho $ is a convex, $\rho $-complete modular space satisfying the Fatou property and $\rho _r$-uniformly convex for all $r>0$, C a convex, $\rho $-closed, $\rho $-bounded subset of $X_\rho $, $T:C\rightarrow C$ a $\rho $-nonexpansive mapping, then $T$ has a fixed point.
Classification : 46A80, 46B20, 46E30, 47H09, 47H10
Keywords: fixed point; modular spaces; $\rho $-nonexpansive mapping; $\rho $-normal structure; $\rho $-uniform normal structure; $\rho _r$-uniformly convex
@article{ARM_2004_40_4_a2,
     author = {Kumam, Poom},
     title = {Fixed point theorems for nonexpansive mappings in modular spaces},
     journal = {Archivum mathematicum},
     pages = {345--353},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129956},
     zbl = {1117.47045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/}
}
TY  - JOUR
AU  - Kumam, Poom
TI  - Fixed point theorems for nonexpansive mappings in modular spaces
JO  - Archivum mathematicum
PY  - 2004
SP  - 345
EP  - 353
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/
LA  - en
ID  - ARM_2004_40_4_a2
ER  - 
%0 Journal Article
%A Kumam, Poom
%T Fixed point theorems for nonexpansive mappings in modular spaces
%J Archivum mathematicum
%D 2004
%P 345-353
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/
%G en
%F ARM_2004_40_4_a2
Kumam, Poom. Fixed point theorems for nonexpansive mappings in modular spaces. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 345-353. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a2/

[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory. Spinger-Verlag, Heidelberg, New York 1990. | MR | Zbl

[2] Ayerbe Toledano J. M., Dominguez Benavides T., and López Acedo G.: Measures of noncompactness in metric fixed point theory: Advances and Applications Topics in metric fixed point theory. Birkhäuser-Verlag, Basel, 99 (1997). | MR

[3] Chen S., Khamsi M. A., Kozlowski W. M.: Some geometrical properties and fixed point theorems in Orlicz modular spaces. J. Math. Anal. Appl. 155 No. 2 (1991), 393–412. | MR

[4] Dominguez Benavides T., Khamsi M. A., Samadi S.: Uniformly Lipschitzian mappings in modular function spaces. Nonlinear Analysis 40 No. 2 (2001), 267–278. | MR

[5] Goebel K., Kirk W. A.: Topic in metric fixed point theorem. Cambridge University Press, Cambridge 1990. | MR

[6] Goebel K., Reich S.: Uniform convexity, Hyperbolic geometry, and nonexpansive mappings. Monographs textbooks in pure and applied mathematics, New York and Basel, 83 1984. | MR | Zbl

[7] Khamsi M. A.: Fixed point theory in modular function spacesm. Recent Advances on Metric Fixed Point Theorem, Universidad de Sivilla, Sivilla No. 8 (1996), 31–58. | MR

[8] Khamsi M. A.: Uniform noncompact convexity, fixed point property in modular spaces. Math. Japonica 41 (1) (1994), 1–6. | MR | Zbl

[9] Khamsi M. A.: A convexity property in modular function spaces. Math. Japonica 44, No. 2 (1990). | MR

[10] Khamsi M. A., Kozlowski W. M., Reich S.: Fixed point property in modular function spaces. Nonlinear Analysis, 14, No. 11 (1990), 935–953. | MR

[11] Kumam P.: Fixed Point Property in Modular Spaces. Master Thesis, Chiang Mai University (2002), Thailand.

[12] Megginson R. E.: An introduction to Banach space theory. Graduate Text in Math. Springer-Verlag, New York 183 (1998). | MR | Zbl

[13] Musielak J.: Orlicz spaces and Modular spaces. Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York 1034 (1983). | MR | Zbl

[14] Musielak J., Orlicz W.: On Modular spaces. Studia Math. 18 (1959), 591–597. | MR | Zbl

[15] Nakano H.: Modular semi-ordered spaces. Tokyo, (1950).