Oscillatory properties of fourth order self-adjoint differential equations
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 457-469
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Oscillation and nonoscillation criteria for the self-adjoint linear differential equation \[ (t^\alpha y^{\prime \prime })^{\prime \prime }-\frac{\gamma _{2,\alpha }}{t^{4-\alpha }}y=q(t)y,\quad \alpha \notin \lbrace 1, 3\rbrace \,, \] where \[ \gamma _{2,\alpha }=\frac{(\alpha -1)^2(\alpha -3)^2}{16}\] and $q$ is a real and continuous function, are established. It is proved, using these criteria, that the equation \[\left(t^\alpha y^{\prime \prime }\right)^{\prime \prime }-\left(\frac{\gamma _{2,\alpha }}{t^{4-\alpha }} + \frac{\gamma }{t^{4-\alpha }\ln ^2 t}\right)y = 0\] is nonoscillatory if and only if $\gamma \le \frac{\alpha ^2-4\alpha +5}{8}$.
Oscillation and nonoscillation criteria for the self-adjoint linear differential equation \[ (t^\alpha y^{\prime \prime })^{\prime \prime }-\frac{\gamma _{2,\alpha }}{t^{4-\alpha }}y=q(t)y,\quad \alpha \notin \lbrace 1, 3\rbrace \,, \] where \[ \gamma _{2,\alpha }=\frac{(\alpha -1)^2(\alpha -3)^2}{16}\] and $q$ is a real and continuous function, are established. It is proved, using these criteria, that the equation \[\left(t^\alpha y^{\prime \prime }\right)^{\prime \prime }-\left(\frac{\gamma _{2,\alpha }}{t^{4-\alpha }} + \frac{\gamma }{t^{4-\alpha }\ln ^2 t}\right)y = 0\] is nonoscillatory if and only if $\gamma \le \frac{\alpha ^2-4\alpha +5}{8}$.
Classification : 34C10
Keywords: self-adjoint differential equation; oscillation and nonoscillation criteria; variational method; conditional oscillation.
@article{ARM_2004_40_4_a11,
     author = {Fi\v{s}narov\'a, Simona},
     title = {Oscillatory properties of fourth order self-adjoint differential equations},
     journal = {Archivum mathematicum},
     pages = {457--469},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129965},
     zbl = {1117.34038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a11/}
}
TY  - JOUR
AU  - Fišnarová, Simona
TI  - Oscillatory properties of fourth order self-adjoint differential equations
JO  - Archivum mathematicum
PY  - 2004
SP  - 457
EP  - 469
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a11/
LA  - en
ID  - ARM_2004_40_4_a11
ER  - 
%0 Journal Article
%A Fišnarová, Simona
%T Oscillatory properties of fourth order self-adjoint differential equations
%J Archivum mathematicum
%D 2004
%P 457-469
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a11/
%G en
%F ARM_2004_40_4_a11
Fišnarová, Simona. Oscillatory properties of fourth order self-adjoint differential equations. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 457-469. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a11/

[1] Coppel W. A.: Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl

[2] Došlý O.: Nehari-type oscillation criteria for self-adjoint linear equations. J. Math. Anal. Appl. 182 (1994), 69–89. | MR

[3] Došlý O.: Oscillatory properties of fourth order Sturm-Liouville differential equations. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 41 (2002), 49–59. | MR | Zbl

[4] Došlý O., Osička J.: Oscillation and nonoscillation of higher order self-adjoint differential equations. Czechoslovak Math. J. 52 (127) (2002), 833-849. | MR

[5] Došlý O., Osička J.: Oscillatory properties of higher order Sturm-Liouville differential equations. Studies Univ. Žilina, Math. Ser. 15 (2002), 25–40. | MR | Zbl

[6] Glazman I. M.: Direct Methods of Qualitative Anylysis of Singular Differential Operators. Davey, Jerusalem 1965.

[7] Hinton D. B., Lewis R. T.: Discrete spectra criteria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. | MR | Zbl