Keywords: quantum hydrodynamics; existence and uniqueness of solutions; non-monotone pressure; semiconductors
@article{ARM_2004_40_4_a10,
author = {J\"ungel, Ansgar and Li, Hailiang},
title = {Quantum {Euler-Poisson} systems: {Existence} of stationary states},
journal = {Archivum mathematicum},
pages = {435--456},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129964},
zbl = {1122.35140},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a10/}
}
Jüngel, Ansgar; Li, Hailiang. Quantum Euler-Poisson systems: Existence of stationary states. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 435-456. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a10/
[1] Brezzi F., Gasser I., Markowich P., Schmeiser C.: Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension. Appl. Math. Lett. 8 (1995), 47–52. | MR
[2] Chen G., Wang D.: Convergence of shock schemes for the compressible Euler-Poisson equations. Comm. Math. Phys. 179 (1996), 333–364. | MR
[3] Courant R., Friedrichs K. O.: Supersonic flow and shock waves. Springer-Verlag, New York 1976. | MR
[4] Degond P., Markowich P. A.: On a one-dimensional steady-state hydrodynamic model. Appl. Math. Lett. 3 (1990), 25–29. | MR
[5] Degond P., Markowich P. A.: A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. 165 (1993), 87–98. | MR
[6] Gamba I.: Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor. Comm. Partial Differential Equations 17 (1992), 553–577. | MR
[7] Gamba I., Jüngel A.: Asymptotic limits in quantum trajectory models. Comm. Partial Differential Equations 27 (2002), 669–691. | MR
[8] Gamba I., Jüngel A.: Positive solutions to singular second and third order differential equations for quantum fluids. Arch. Rational Mech. Anal. 156 (2001), 183–203. | MR
[9] Gamba I., Morawitz C.: A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow. Comm. Pure Appl. Math. 49 (1996), 999–1049. | MR
[10] Gardner C.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device. IEEE Trans. El. Dev. 38 (1991), 392–398.
[11] Gardner C.: The quantum hydrodynamic model for semiconductors devices. SIAM J. Appl. Math. 54 (1994), 409–427. | MR
[12] Gasser I., Jüngel A.: The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z. Angew. Math. Phys. 48 (1997), 45–59. | MR
[13] Gasser I., Lin C.-K., Markowich P.: A review of dispersive limits of the (non)linear Schrödinger-type equation. Taiwanese J. of Math. 4, (2000), 501–529. | MR
[14] Gasser I., Markowich P.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14 (1997), 97–116. | MR | Zbl
[15] Gasser I., Markowich P. A., Ringhofer C.: Closure conditions for classical and quantum moment hierarchies in the small temperature limit. Transport Theory Statistic Phys. 25 (1996), 409–423. | MR | Zbl
[16] Gyi M. T., Jüngel A.: A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Differential Equations 5 (2000), 773–800. | MR | Zbl
[17] Hsiao L., Yang T.: Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors. J. Differential Equations 170 (2001), 472–493. | MR
[18] Jerome J.: Analysis of charge transport: a mathematical study of semiconductor devices. Springer-Verlag, Heidelberg 1996. | MR
[19] Jüngel A.: A steady-state potential flow Euler-Poisson system for charged quantum fluids. Comm. Math. Phys. 194 (1998), 463–479. | MR
[20] Jüngel A.: Quasi-hydrodynamic semiconductor equations. Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001. | MR | Zbl
[21] Jüngel A., Mariani M. C., Rial D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 12 (2002), 485–495. | MR | Zbl
[22] Jüngel A., Li H.-L.: Quantum Euler-Poisson systems: global existence and exponential decay. to appear in Quart. Appl. Math. 2005. | MR | Zbl
[23] Landau L. D., Lifshitz E. M.: Quantum mechanics: non-relativistic theory. New York, Pergamon Press 1977. | MR
[24] Li H.-L., Markowich P. A.: A review of hydrodynamical models for semiconductors: asymptotic behavior. Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342. | MR | Zbl
[25] Loffredo M., Morato L.: On the creation of quantum vortex lines in rotating HeII. Il nouvo cimento 108B (1993), 205–215.
[26] Madelung E.: Quantentheorie in hydrodynamischer Form. Z. Phys. 40 (1927), 322.
[27] Marcati P., Natalini R.: Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal. 129 (1995), 129–145. | MR | Zbl
[28] Markowich P., Ringhofer C., Schmeiser C.: Semiconductor Equations. Springer, Wien 1990. | MR | Zbl
[29] Pacard F., Unterreiter A.: A variational analysis of the thermal equilibrium state of charged quantum fluids. Comm. Partial Differential Equations 20 (1995), 885–900. | MR | Zbl
[30] Shu C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997. | MR
[31] Zhang B., Jerome W.: On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856. | MR | Zbl