Antiflows, oriented and strong oriented colorings of graphs
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 335-343 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present an overview of the theory of nowhere zero flows, in particular the duality of flows and colorings, and the extension to antiflows and strong oriented colorings. As the main result, we find the asymptotic relation between oriented and strong oriented chromatic number.
We present an overview of the theory of nowhere zero flows, in particular the duality of flows and colorings, and the extension to antiflows and strong oriented colorings. As the main result, we find the asymptotic relation between oriented and strong oriented chromatic number.
Classification : 05C15
Keywords: antiflow; strong oriented coloring
@article{ARM_2004_40_4_a1,
     author = {\v{S}\'amal, Robert},
     title = {Antiflows, oriented and strong oriented colorings of graphs},
     journal = {Archivum mathematicum},
     pages = {335--343},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2129955},
     zbl = {1114.05032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/}
}
TY  - JOUR
AU  - Šámal, Robert
TI  - Antiflows, oriented and strong oriented colorings of graphs
JO  - Archivum mathematicum
PY  - 2004
SP  - 335
EP  - 343
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/
LA  - en
ID  - ARM_2004_40_4_a1
ER  - 
%0 Journal Article
%A Šámal, Robert
%T Antiflows, oriented and strong oriented colorings of graphs
%J Archivum mathematicum
%D 2004
%P 335-343
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/
%G en
%F ARM_2004_40_4_a1
Šámal, Robert. Antiflows, oriented and strong oriented colorings of graphs. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 335-343. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/

[1] DeVos M., Nešetřil J., Raspaud A.: Antisymmetric Flows and Edge connectivity. Discrete Math. 276 (2004), No. 1-3, 161–167. | MR | Zbl

[2] Diestel R.: Graph Theory. Springer 2000. | MR | Zbl

[3] Graham R. L., Grotschel M., Lovasz L. (editors): Handbook of Combinatorics. North-Holland 1995.

[4] Lang S.: Algebra. Chapter I, §8, Springer 2002. | MR | Zbl

[5] Nešetřil J., Raspaud A.: Antisymmetric Flows and Strong Colourings of Oriented graphs. An. Inst. Fourier (Grenoble) 49, 3 (1999), 1037–1056. | MR | Zbl

[6] Rohrbach H., Weis J.: Zum finiten Fall des Bertrandschen Postulats. J. Reine Angew. Math., 214/5 (1964), 432–440. | MR | Zbl

[7] Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43 (1938) 377–385. | MR | Zbl

[8] Srinivasan B. R.: On the number of Abelian groups of a given order. Acta Arith. 23 (1973), 195–205. | MR | Zbl

[9] Šámal R.: Antisymmetric flows and strong oriented coloring of planar graphs. EuroComb’01 (Barcelona), Discrete Math. 273 (2003), no. 1-3, 203–209. | MR | Zbl

[10] Šámal R.: Flows and Colorings of Graphs. Proceedings of the conference Week of Doctoral Students 2002, Charles University in Prague, Faculty of Mathematics and Physics.