@article{ARM_2004_40_4_a1,
author = {\v{S}\'amal, Robert},
title = {Antiflows, oriented and strong oriented colorings of graphs},
journal = {Archivum mathematicum},
pages = {335--343},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129955},
zbl = {1114.05032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/}
}
Šámal, Robert. Antiflows, oriented and strong oriented colorings of graphs. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 335-343. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a1/
[1] DeVos M., Nešetřil J., Raspaud A.: Antisymmetric Flows and Edge connectivity. Discrete Math. 276 (2004), No. 1-3, 161–167. | MR | Zbl
[2] Diestel R.: Graph Theory. Springer 2000. | MR | Zbl
[3] Graham R. L., Grotschel M., Lovasz L. (editors): Handbook of Combinatorics. North-Holland 1995.
[4] Lang S.: Algebra. Chapter I, §8, Springer 2002. | MR | Zbl
[5] Nešetřil J., Raspaud A.: Antisymmetric Flows and Strong Colourings of Oriented graphs. An. Inst. Fourier (Grenoble) 49, 3 (1999), 1037–1056. | MR | Zbl
[6] Rohrbach H., Weis J.: Zum finiten Fall des Bertrandschen Postulats. J. Reine Angew. Math., 214/5 (1964), 432–440. | MR | Zbl
[7] Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43 (1938) 377–385. | MR | Zbl
[8] Srinivasan B. R.: On the number of Abelian groups of a given order. Acta Arith. 23 (1973), 195–205. | MR | Zbl
[9] Šámal R.: Antisymmetric flows and strong oriented coloring of planar graphs. EuroComb’01 (Barcelona), Discrete Math. 273 (2003), no. 1-3, 203–209. | MR | Zbl
[10] Šámal R.: Flows and Colorings of Graphs. Proceedings of the conference Week of Doctoral Students 2002, Charles University in Prague, Faculty of Mathematics and Physics.