Keywords: upper solution; lower solution; order interval; truncation function; penalty function; pseudomonotone operator; coercive operator; Leray-Schauder principle; maximal solution; minimal solution
@article{ARM_2004_40_4_a0,
author = {Cardinali, Tiziana and Papageorgiou, Nikolaos S. and Servadei, Raffaella},
title = {The {Neumann} problem for quasilinear differential equations},
journal = {Archivum mathematicum},
pages = {321--333},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2129954},
zbl = {1122.35030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a0/}
}
TY - JOUR AU - Cardinali, Tiziana AU - Papageorgiou, Nikolaos S. AU - Servadei, Raffaella TI - The Neumann problem for quasilinear differential equations JO - Archivum mathematicum PY - 2004 SP - 321 EP - 333 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a0/ LA - en ID - ARM_2004_40_4_a0 ER -
Cardinali, Tiziana; Papageorgiou, Nikolaos S.; Servadei, Raffaella. The Neumann problem for quasilinear differential equations. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 321-333. http://geodesic.mathdoc.fr/item/ARM_2004_40_4_a0/
[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. 10 (1986), 1083–1103. | MR
[2] Brézis H.: Analyse functionelle: Théorie et applications. Masson, Paris 1983. | MR
[3] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\vert u^{^{\prime }}(t) \vert ^{p-2}u^{^{\prime }}(t))^{^{\prime }} + f(t,u(t)) = 0, u(0)=u(T)=0, p>1)$. J. Differential Equations 80 (1989), 1–13. | MR
[4] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. | MR
[5] Dunford N., Schwartz J. T.: Linear operators. Part I: General theory. Interscience Publishers, New York 1958–1971. | MR
[6] Gao W., Wang J.: A nonlinear second order periodic boundary value problem with Carathéodory functions. Ann. Polon. Math. LXVII. 3 (1995), 283–291. | MR
[7] Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin 1983. | MR | Zbl
[8] Dugundji J., Granas A.: Fixed point theory, Vol. I. Monogr. Mat. PWN, Warsaw 1992.
[9] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations. Differential Integral Equations 6, No. 3 (1993), 705–719. | MR | Zbl
[10] Halidias N., Papageorgiou N. S.: Existence of solutions for nonlinear parabolic problems. Arch. Math. (Brno) 35 (1999), 255–274. | MR | Zbl
[11] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands 1997. | MR | Zbl
[12] Marcus M., Mizel V. J.: Absolute continuity on tracks and mapping of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320. | MR
[13] O’Regan D.: Some General existence principles and results for $(\phi (y^{^{\prime }}))= qf(t,y,y^{^{\prime }}), 0. SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. MR 1215430
[14] Pascali D., Sburlan S.: Nonlinear mapping of monotone type. Editura Academiei, Bucuresti, Romania 1978. | MR
[15] Peressini A. L.: Ordered topological vector spaces. Harper & Row, New York, Evanstone, London 1967. | MR | Zbl
[16] Wang J., Jiang D.: A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions. J. Math. Anal. Appl. 211 (1997), 223–232. | MR | Zbl
[17] Zeidler E.: Nonlinear functional analysis and its applications II. Springer-Verlag, New York 1990. | MR | Zbl