Characterizations of Lambek-Carlitz type
Archivum mathematicum, Tome 40 (2004) no. 3, pp. 295-300 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established.
We give Lambek-Carlitz type characterization for completely multiplicative reduced incidence functions in Möbius categories of full binomial type. The $q$-analog of the Lambek-Carlitz type characterization of exponential series is also established.
Classification : 11A25, 13F25, 18B99
Keywords: completely multiplicative functions; Möbius categories; exponential series
@article{ARM_2004_40_3_a9,
     author = {Schwab, Emil Daniel},
     title = {Characterizations of {Lambek-Carlitz} type},
     journal = {Archivum mathematicum},
     pages = {295--300},
     year = {2004},
     volume = {40},
     number = {3},
     mrnumber = {2107025},
     zbl = {1122.11003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/}
}
TY  - JOUR
AU  - Schwab, Emil Daniel
TI  - Characterizations of Lambek-Carlitz type
JO  - Archivum mathematicum
PY  - 2004
SP  - 295
EP  - 300
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/
LA  - en
ID  - ARM_2004_40_3_a9
ER  - 
%0 Journal Article
%A Schwab, Emil Daniel
%T Characterizations of Lambek-Carlitz type
%J Archivum mathematicum
%D 2004
%P 295-300
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/
%G en
%F ARM_2004_40_3_a9
Schwab, Emil Daniel. Characterizations of Lambek-Carlitz type. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 295-300. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/

[1] Carlitz L.: Problem E 2268. Amer. Math. Monthly 78 (1971), 1140. | MR

[2] Content M., Lemay F., Leroux P.: Catégories de Möbius et fonctorialités: un cadre gènèral pour l’inversion de Möbius. J. Combin. Theory Ser. A 25 (1980), 169–190. | MR | Zbl

[3] Doubilet P., Rota G. C., Stanley R.: On the foundations of combinatorial theory (VI): the idea of generating function. Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318. | MR | Zbl

[4] Goldman J., Rota G. C.: On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions. Stud. Appl. Math. 49 (1970), 239–258. | MR | Zbl

[5] Lambek J.: Arithmetical functions and distributivity. Amer. Math. Monthly 73 (1966), 969–973. | MR | Zbl

[6] Langford E.: Distributivity over the Dirichlet product and complete multiplicative arithmetical functions. Amer. Math. Monthly 80 (1973), 411–414. | MR

[7] Leroux P.: Les catégories de Möbius. Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280–282.

[8] Leroux P.: Catégories triangulaires. Exemples, applications, et problèmes. Rapport de recherche, Université du Québec a Montréal (1980), 72p.

[9] Leroux P.: Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers. J. Combin. Theory Ser. A (1990), 64–84. | MR | Zbl

[10] Schwab E. D.: Multiplicative and additive elements in the ring of formal power series. PU.M.A. 4 (1993), 339–346. | MR | Zbl

[11] Schwab E. D.: Complete multiplicativity and complete additivity in Möbius categories. Ital. J. Pure Appl. Math. 3 (1998), 37–48. | MR | Zbl

[12] Sivaramakrishnan R.: Problem E 2196. Amer. Math. Monthly 77 (1970), 772.