Keywords: completely multiplicative functions; Möbius categories; exponential series
@article{ARM_2004_40_3_a9,
author = {Schwab, Emil Daniel},
title = {Characterizations of {Lambek-Carlitz} type},
journal = {Archivum mathematicum},
pages = {295--300},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2107025},
zbl = {1122.11003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/}
}
Schwab, Emil Daniel. Characterizations of Lambek-Carlitz type. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 295-300. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a9/
[1] Carlitz L.: Problem E 2268. Amer. Math. Monthly 78 (1971), 1140. | MR
[2] Content M., Lemay F., Leroux P.: Catégories de Möbius et fonctorialités: un cadre gènèral pour l’inversion de Möbius. J. Combin. Theory Ser. A 25 (1980), 169–190. | MR | Zbl
[3] Doubilet P., Rota G. C., Stanley R.: On the foundations of combinatorial theory (VI): the idea of generating function. Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 267–318. | MR | Zbl
[4] Goldman J., Rota G. C.: On the foundations of combinatorial theory IV: finite-vector spaces and Eulerian generating functions. Stud. Appl. Math. 49 (1970), 239–258. | MR | Zbl
[5] Lambek J.: Arithmetical functions and distributivity. Amer. Math. Monthly 73 (1966), 969–973. | MR | Zbl
[6] Langford E.: Distributivity over the Dirichlet product and complete multiplicative arithmetical functions. Amer. Math. Monthly 80 (1973), 411–414. | MR
[7] Leroux P.: Les catégories de Möbius. Cahiers Topologie Géom. Différentielle Catég. 16 (1975), 280–282.
[8] Leroux P.: Catégories triangulaires. Exemples, applications, et problèmes. Rapport de recherche, Université du Québec a Montréal (1980), 72p.
[9] Leroux P.: Reduced matrices and $q$-log-concavity properties of $q$-Stirling numbers. J. Combin. Theory Ser. A (1990), 64–84. | MR | Zbl
[10] Schwab E. D.: Multiplicative and additive elements in the ring of formal power series. PU.M.A. 4 (1993), 339–346. | MR | Zbl
[11] Schwab E. D.: Complete multiplicativity and complete additivity in Möbius categories. Ital. J. Pure Appl. Math. 3 (1998), 37–48. | MR | Zbl
[12] Sivaramakrishnan R.: Problem E 2196. Amer. Math. Monthly 77 (1970), 772.