Finiteness of a class of Rabinowitsch polynomials
Archivum mathematicum, Tome 40 (2004) no. 3, pp. 259-261
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.
We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.
Classification : 11C08, 11R11, 11R29
Keywords: real quadratic fields; class number; Rabinowitsch polynomials
@article{ARM_2004_40_3_a4,
     author = {Schlage-Puchta, Jan-Christoph},
     title = {Finiteness of a class of {Rabinowitsch} polynomials},
     journal = {Archivum mathematicum},
     pages = {259--261},
     year = {2004},
     volume = {40},
     number = {3},
     mrnumber = {2107020},
     zbl = {1122.11070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/}
}
TY  - JOUR
AU  - Schlage-Puchta, Jan-Christoph
TI  - Finiteness of a class of Rabinowitsch polynomials
JO  - Archivum mathematicum
PY  - 2004
SP  - 259
EP  - 261
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/
LA  - en
ID  - ARM_2004_40_3_a4
ER  - 
%0 Journal Article
%A Schlage-Puchta, Jan-Christoph
%T Finiteness of a class of Rabinowitsch polynomials
%J Archivum mathematicum
%D 2004
%P 259-261
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/
%G en
%F ARM_2004_40_3_a4
Schlage-Puchta, Jan-Christoph. Finiteness of a class of Rabinowitsch polynomials. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 259-261. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/

[1] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials. J. Number Theory 94 (2002), 177–180. | DOI | MR | Zbl

[2] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials. II. J. Number Theory 99 (2003), 219–221. | DOI | MR | Zbl

[3] Heath-Brown D. R.: Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), 265–338. | MR | Zbl

[4] Rabinowitsch G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Mathematik 142 (1913), 153–164.