Finiteness of a class of Rabinowitsch polynomials
Archivum mathematicum, Tome 40 (2004) no. 3, pp. 259-261
We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.
We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.
Classification :
11C08, 11R11, 11R29
Keywords: real quadratic fields; class number; Rabinowitsch polynomials
Keywords: real quadratic fields; class number; Rabinowitsch polynomials
@article{ARM_2004_40_3_a4,
author = {Schlage-Puchta, Jan-Christoph},
title = {Finiteness of a class of {Rabinowitsch} polynomials},
journal = {Archivum mathematicum},
pages = {259--261},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2107020},
zbl = {1122.11070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/}
}
Schlage-Puchta, Jan-Christoph. Finiteness of a class of Rabinowitsch polynomials. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 259-261. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a4/
[1] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials. J. Number Theory 94 (2002), 177–180. | DOI | MR | Zbl
[2] Byeon D., Stark H. M.: On the Finiteness of Certain Rabinowitsch Polynomials. II. J. Number Theory 99 (2003), 219–221. | DOI | MR | Zbl
[3] Heath-Brown D. R.: Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), 265–338. | MR | Zbl
[4] Rabinowitsch G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Mathematik 142 (1913), 153–164.