Keywords: $Q$-ring; almost $Q$-ring; Noetherian $Q$-ring.
@article{ARM_2004_40_3_a3,
author = {Jayaram, C.},
title = {Almost $Q$-rings},
journal = {Archivum mathematicum},
pages = {249--257},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2107019},
zbl = {1112.13004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a3/}
}
Jayaram, C. Almost $Q$-rings. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 249-257. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a3/
[1] Anderson D. D.: Multiplication ideals, Multiplication rings and the ring $R(X)$. Canad. J. Math. XXVIII (1976), 760–768. | MR | Zbl
[2] Anderson D. D.: Some remarks on multiplication ideals. Math. Japon. 25 (1980), 463–469. | MR | Zbl
[3] Anderson D. D.: Noetherian rings in which every ideal is a product of primary ideals. Canad. Math. Bull. 23 (4), (1980), 457–459. | MR | Zbl
[4] Anderson D. D., Mahaney L. A.: Commutative rings in which every ideal is a product of primary ideals. J. Algebra 106 (1987), 528–535. | MR | Zbl
[5] Anderson D. D., Mahaney L. A.: On primary factorizations. J. Pure Appl. Algebra 54 (1988), 141–154. | MR | Zbl
[6] Becerra L., Johnson J. A.: A note on quasi-principal ideals. Tamkang J. Math. (1982), 77–82. | MR
[7] Heinzer W., Ohm J.: Locally Noetherian commutative rings. Trans. Amer. Math. Soc. 158 (1971), 273–284. | MR | Zbl
[8] Heinzer W., Lantz D.: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. | MR | Zbl
[9] Larsen M. D., McCarthy P. J.: Multiplicative theory of ideals. Academic Press, New York 1971. | MR | Zbl
[10] Levitz K. B.: A characterization of general ZPI-rings. Proc. Amer. Math. Soc. 32 (1972), 376–380. | MR
[11] McCarthy P. J.: Principal elements of lattices of ideals. Proc. Amer. Math. Soc. 30 (1971), 43–45. | MR | Zbl
[12] Ohm J., Pendleton R. L.: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–639. | MR | Zbl