Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side
Archivum mathematicum, Tome 40 (2004) no. 3, pp. 219-227 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper a fixed point theorem due to Covitz and Nadler for contraction multivalued maps, and the Schaefer’s theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with decomposables values, are used to investigate the existence of solutions for boundary value problems of fourth-order differential inclusions.
In this paper a fixed point theorem due to Covitz and Nadler for contraction multivalued maps, and the Schaefer’s theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with decomposables values, are used to investigate the existence of solutions for boundary value problems of fourth-order differential inclusions.
Classification : 34A60, 34B15, 47H10
Keywords: differential inclusions; contraction multivalued map; fixed point; decomposable values; measurable
@article{ARM_2004_40_3_a0,
     author = {Arara, A. and Benchohra, M. and Ntouyas, Sotiris K. and Ouahab, A.},
     title = {Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side},
     journal = {Archivum mathematicum},
     pages = {219--227},
     year = {2004},
     volume = {40},
     number = {3},
     mrnumber = {2107016},
     zbl = {1117.34005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/}
}
TY  - JOUR
AU  - Arara, A.
AU  - Benchohra, M.
AU  - Ntouyas, Sotiris K.
AU  - Ouahab, A.
TI  - Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side
JO  - Archivum mathematicum
PY  - 2004
SP  - 219
EP  - 227
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/
LA  - en
ID  - ARM_2004_40_3_a0
ER  - 
%0 Journal Article
%A Arara, A.
%A Benchohra, M.
%A Ntouyas, Sotiris K.
%A Ouahab, A.
%T Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side
%J Archivum mathematicum
%D 2004
%P 219-227
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/
%G en
%F ARM_2004_40_3_a0
Arara, A.; Benchohra, M.; Ntouyas, Sotiris K.; Ouahab, A. Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 219-227. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/

[1] Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116 (1986), 415–426. | MR | Zbl

[2] Agarwal, R.: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2 (1989), 91–110. | MR | Zbl

[3] Bressan, A. and Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. | MR

[3] Cabada, A.: The method of lower and upper solutions for second, third, fourth, and higher order boundary value problem. J. Math. Anal. Appl. 248 (2000), 195–202. | MR

[5] Castaing, C. and Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR

[6] Covitz, H. and Nadler, S. B., Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | MR

[7] De Coster, C., Fabry, C. and Munyamarere, F.: Nonresonance condition for fourth-order nonlinear boundary value problems. Int. J. Math. Math. Sci. 17 (1994), 725–740. | MR

[8] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin, 1992. | MR | Zbl

[9] Del Pino, M. A. and Manasevich, R. F.: Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition. Proc. Amer. Math. Soc. 112 (1991), 81–86. | MR

[10] Frigon, M. and Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris, Ser. I Math. 310 (1990), 819–822. | MR

[11] Gorniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Math. Appl. 495, Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl

[12] Hu, Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. | MR

[13] Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands, 1991. | MR | Zbl

[14] Korman, P.: A maximum principle for fourth-order ordinary differential equations. Appl. Anal. 33 (1989), 267–273. | MR | Zbl

[15] Ma, R. Y., Zhang, J. H. and Fu, M.: The method of lower and upper solutions for fourth-order two-point boundary value problem. J. Math. Anal. Appl. 215 (1997), 415–422. | MR

[16] Schroeder, J.: Fourth-order two-point boundary value problems; estimates by two-sided bounds. Nonlinear Anal. 8 (1984), 107–114. | MR | Zbl

[17] Smart, D. R.: Fixed Point Theorems. Cambridge Univ. Press, Cambridge, 1974. | MR | Zbl

[18] Švec, M.: Periodic boundary value problem for fourth order differential inclusions. Arch. Math. (Brno) 33 (1997), 167–171. | MR