Keywords: differential inclusions; contraction multivalued map; fixed point; decomposable values; measurable
@article{ARM_2004_40_3_a0,
author = {Arara, A. and Benchohra, M. and Ntouyas, Sotiris K. and Ouahab, A.},
title = {Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side},
journal = {Archivum mathematicum},
pages = {219--227},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2107016},
zbl = {1117.34005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/}
}
TY - JOUR AU - Arara, A. AU - Benchohra, M. AU - Ntouyas, Sotiris K. AU - Ouahab, A. TI - Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side JO - Archivum mathematicum PY - 2004 SP - 219 EP - 227 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/ LA - en ID - ARM_2004_40_3_a0 ER -
%0 Journal Article %A Arara, A. %A Benchohra, M. %A Ntouyas, Sotiris K. %A Ouahab, A. %T Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side %J Archivum mathematicum %D 2004 %P 219-227 %V 40 %N 3 %U http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/ %G en %F ARM_2004_40_3_a0
Arara, A.; Benchohra, M.; Ntouyas, Sotiris K.; Ouahab, A. Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side. Archivum mathematicum, Tome 40 (2004) no. 3, pp. 219-227. http://geodesic.mathdoc.fr/item/ARM_2004_40_3_a0/
[1] Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116 (1986), 415–426. | MR | Zbl
[2] Agarwal, R.: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2 (1989), 91–110. | MR | Zbl
[3] Bressan, A. and Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. | MR
[3] Cabada, A.: The method of lower and upper solutions for second, third, fourth, and higher order boundary value problem. J. Math. Anal. Appl. 248 (2000), 195–202. | MR
[5] Castaing, C. and Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR
[6] Covitz, H. and Nadler, S. B., Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | MR
[7] De Coster, C., Fabry, C. and Munyamarere, F.: Nonresonance condition for fourth-order nonlinear boundary value problems. Int. J. Math. Math. Sci. 17 (1994), 725–740. | MR
[8] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin, 1992. | MR | Zbl
[9] Del Pino, M. A. and Manasevich, R. F.: Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition. Proc. Amer. Math. Soc. 112 (1991), 81–86. | MR
[10] Frigon, M. and Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris, Ser. I Math. 310 (1990), 819–822. | MR
[11] Gorniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Math. Appl. 495, Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl
[12] Hu, Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Dordrecht, Boston, London, 1997. | MR
[13] Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands, 1991. | MR | Zbl
[14] Korman, P.: A maximum principle for fourth-order ordinary differential equations. Appl. Anal. 33 (1989), 267–273. | MR | Zbl
[15] Ma, R. Y., Zhang, J. H. and Fu, M.: The method of lower and upper solutions for fourth-order two-point boundary value problem. J. Math. Anal. Appl. 215 (1997), 415–422. | MR
[16] Schroeder, J.: Fourth-order two-point boundary value problems; estimates by two-sided bounds. Nonlinear Anal. 8 (1984), 107–114. | MR | Zbl
[17] Smart, D. R.: Fixed Point Theorems. Cambridge Univ. Press, Cambridge, 1974. | MR | Zbl
[18] Švec, M.: Periodic boundary value problem for fourth order differential inclusions. Arch. Math. (Brno) 33 (1997), 167–171. | MR