Keywords: unitary convolution; Schauder Basis; factorization into atoms; zero divisors
@article{ARM_2004_40_2_a3,
author = {Snellman, Jan},
title = {The ring of arithmetical functions with unitary convolution: {Divisorial} and topological properties},
journal = {Archivum mathematicum},
pages = {161--179},
year = {2004},
volume = {40},
number = {2},
mrnumber = {2068688},
zbl = {1122.11004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a3/}
}
Snellman, Jan. The ring of arithmetical functions with unitary convolution: Divisorial and topological properties. Archivum mathematicum, Tome 40 (2004) no. 2, pp. 161-179. http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a3/
[1] Anderson D. D., Valdes-Leon S.: Factorization in commutative rings with zero divisors. Rocky Mountain J. Math. 26(2) (1996), 439–480. | MR | Zbl
[2] Anderson D. D., Valdes-Leon S.: Factorization in commutative rings with zero divisors. II. In Factorization in integral domains (Iowa City, IA, 1996), Dekker, New York 1997, 197–219. | MR
[3] Bosch S., Güntzer U., Remmert R.: Non-Archimedean analysis. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. | MR | Zbl
[4] Cashwell E. D., Everett C. J.: The ring of number-theorethic functions. Pacific Journal of Mathematics 9 (1959), 975–985. | MR
[5] Cohen E.: Arithmetical functions associated with the unitary divisors of an integer. Math. Z. | MR | Zbl
[6] Huckaba, James A.: Commutative rings with zero divisors. Marcel Dekker Inc., New York, 1988. | MR | Zbl
[7] Narkiewicz W.: On a class of arithmetical convolutions. Colloq. Math. 10 (1963), 81–94. | MR | Zbl
[8] Schwab, Emil D., Silberberg, Gheorghe: A note on some discrete valuation rings of arithmetical functions. Arch. Math. (Brno) 36 (2000),103–109. | MR | Zbl
[9] Schwab, Emil D., Silberberg, Gheorghe: The valuated ring of the arithmetical functions as a power series ring. Arch. Math. (Brno) 37(1) (2001), 77–80. | MR | Zbl
[10] Sivaramakrishnan R.: Classical theory of arithmetic functions. volume 126 of Pure and Applied Mathematics, Marcel Dekker, 1989. | MR | Zbl
[11] Vaidyanathaswamy R.: The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc. 33(2) (1931), 579–662. | MR | Zbl
[12] Wilson, Richard M.: The necessary conditions for $t$-designs are sufficient for something. Util. Math. 4 (1973), 207–215. | MR | Zbl
[13] Yocom K. L.: Totally multiplicative functions in regular convolution rings. Canad. Math. Bull. 16 (1973), 119–128. | MR | Zbl