On weak forms of preopen and preclosed functions
Archivum mathematicum, Tome 40 (2004) no. 2, pp. 119-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce two classes of functions called weakly preopen and weakly preclosed functions as generalization of weak openness and weak closedness due to [26] and [27] respectively. We obtain their characterizations, their basic properties and their relationshisps with other types of functions between topological spaces.
In this paper we introduce two classes of functions called weakly preopen and weakly preclosed functions as generalization of weak openness and weak closedness due to [26] and [27] respectively. We obtain their characterizations, their basic properties and their relationshisps with other types of functions between topological spaces.
Classification : 54A40, 54C08, 54C10, 54D10
Keywords: preopen sets preclosed sets; weakly preclosed functions; extremally disconnected spaces; quasi H-closed spaces
@article{ARM_2004_40_2_a1,
     author = {Caldas, Miguel and Navalagi, Govindappa},
     title = {On weak forms of preopen and preclosed functions},
     journal = {Archivum mathematicum},
     pages = {119--128},
     year = {2004},
     volume = {40},
     number = {2},
     mrnumber = {2068686},
     zbl = {1111.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a1/}
}
TY  - JOUR
AU  - Caldas, Miguel
AU  - Navalagi, Govindappa
TI  - On weak forms of preopen and preclosed functions
JO  - Archivum mathematicum
PY  - 2004
SP  - 119
EP  - 128
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a1/
LA  - en
ID  - ARM_2004_40_2_a1
ER  - 
%0 Journal Article
%A Caldas, Miguel
%A Navalagi, Govindappa
%T On weak forms of preopen and preclosed functions
%J Archivum mathematicum
%D 2004
%P 119-128
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a1/
%G en
%F ARM_2004_40_2_a1
Caldas, Miguel; Navalagi, Govindappa. On weak forms of preopen and preclosed functions. Archivum mathematicum, Tome 40 (2004) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_2004_40_2_a1/

[1] Abd-El-Monsef M. E., El-Deeb S. N., Mahmoud R. A.: $\beta $-open and $\beta $-continuous mappings. Bull. Fac. Sci. Assiut Univ. 12 (1983), 70–90.

[2] Andrijevic D.: Semipreopen sets. Mat. Vesnik 38 (1986), 24–32. | MR

[3] Arya S. P., Gupta R.: Strongly continuous mappings. Kyungpook Math. J. 14 (1974), 131–143. | MR | Zbl

[4] Baker C. W.: Contra-open functions and contra-closed functions. Math. Today (Ahmedabad) 15 (1997), 19–24. | MR | Zbl

[5] Baker C. W.: Decomposition of openness. Int. J. Math. Math. Sci. 17 (1994), 413–415. | MR | Zbl

[6] Caldas M.: Weak and strong forms of irresolute maps. Int. J. Math. Math. Sci. 23 (2000), 253–259. | MR | Zbl

[7] Cameron D. E.: Properties of s-closed spaces. Proc. Amer. Math. Soc. 72 (1978), 581–586. | MR | Zbl

[8] Cameron D. E.: Some maximal topologies which are Q.H.C. Proc. Amer. Math. Soc. 75 (1979), 149–156. | MR

[9] Chew J., Tong J.: Some remarks on weak continuity. Amer. Math. Monthly 98 (1991), 931–934. | MR | Zbl

[10] Costovici, Gh.: Other elementary properties of the mappings of topological spaces. Bul. Inst. Politehn. Iasi. Sect. I. 26 (1980), 19–21. | MR | Zbl

[11] Corson H., Michael E.: Metrizability of certain countable union. Illinois J. Math. 18 (1964), 351–360. | MR

[12] El-Deeb S. N., Hasanein I. A., Mashhour A. S., Noiri T.: On $p$-regular spaces. Bull. Math. Soc. Sci. Math. R.S. Roum. 27 (1983), 311–315. | MR | Zbl

[13] Husain T.: Almost continuous mappings. Pr. Mat. 10 (1966), 1–7. | MR | Zbl

[14] Kar A., Bhattacharya P.: Weakly semicontinuous functions. J. Indian Acad. Math. 8 (1986), 83–93. | MR

[15] Kar A., Bhattacharya P.: Some weak separation axioms. Bull. Calcutta Math. Soc. 82 (1996), 415–422. | MR

[16] Levine N.: Strong continuity in topological spaces. Amer. Math. Monthly 67 (1960), 269. | Zbl

[17] Long P. E., Carnahan D. A.: Comparing almost continuous functions. Proc. Amer. Math. Soc. 38 (1973), 413–418. | MR | Zbl

[18] Maheshwari, S,. N., Prasad R.: Some new separation axioms. Ann. Soc. Sci. Bruxelles 89 (1975), 395–402. | MR | Zbl

[19] Mashhour A. S., Abd El-Monsef M. E., El-Deeb S. N.: Precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt. 53 (1982), 47–53. | MR

[20] Mashhour A. S., Hasanein I. A., EL-Deeb S. N.: $\alpha $-continuous and $\alpha $-open mappings. Acta Math. Hungar. 41 (1983), 213–218. | MR | Zbl

[21] Njastad O.: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970. | MR | Zbl

[22] Noiri T.: A generalization of closed mappings. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 54 (1973), 412–415. | MR

[23] Noiri T.: On $\theta $-semicontinuous functions. Indian J. Pure Appl. Math. 21 (1990), 410–415. | MR

[24] Ptak V.: Completeness and open mappings theorem. Bull. Soc. Math. France 86 (1958), 41–74. | MR

[25] Popa V.: Properties of $H$-almost continuous functions. Bull. Math. Soc. Sci. Math. R.S. Roum. 31 (1987), 163–168. | MR | Zbl

[26] Rose D. A.: On weak openness and almost openness. Int. J. Math. Math. Sci. 7 (1984), 35–40. | MR

[27] Rose D. A., Jankovic D. S.: Weakly closed functions and Hausdorff spaces. Math. Nachr. 130 (1987), 105–110. | MR | Zbl

[28] Singal M. K., Singal A. R.: Almost continuous mappings. Yokohama Math. J. 16 (1968), 63–73. | MR | Zbl

[29] Velicko N. V.: $H$-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968), 103–118.

[30] Willard S.: General topology. Addition Wesley Publishing Company (1970). | MR | Zbl