@article{ARM_2004_40_1_a8,
author = {Hakl, Robert and Lomtatidze, Alexander and \v{S}remr, Ji\v{r}{\'\i}},
title = {Solvability of a periodic type boundary value problem for first order scalar functional differential equations},
journal = {Archivum mathematicum},
pages = {89--109},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2054875},
zbl = {1117.34061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a8/}
}
TY - JOUR AU - Hakl, Robert AU - Lomtatidze, Alexander AU - Šremr, Jiří TI - Solvability of a periodic type boundary value problem for first order scalar functional differential equations JO - Archivum mathematicum PY - 2004 SP - 89 EP - 109 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a8/ LA - en ID - ARM_2004_40_1_a8 ER -
%0 Journal Article %A Hakl, Robert %A Lomtatidze, Alexander %A Šremr, Jiří %T Solvability of a periodic type boundary value problem for first order scalar functional differential equations %J Archivum mathematicum %D 2004 %P 89-109 %V 40 %N 1 %U http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a8/ %G en %F ARM_2004_40_1_a8
Hakl, Robert; Lomtatidze, Alexander; Šremr, Jiří. Solvability of a periodic type boundary value problem for first order scalar functional differential equations. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 89-109. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a8/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations. Nauka, Moscow, 1991 (In Russian). | MR | Zbl
[2] Azbelev, N V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and applications. Mem. Differential Equations Math. Phys. 8 (1996), 1–102. | MR | Zbl
[3] Bernfeld S. R., Lakshmikantham V.: An introduction to nonlinear boundary value problems. Academic Press, Inc., New York and London, 1974. | MR | Zbl
[4] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations. Mem. Differential Equations Math. Phys. 20 (2000), 133–135. | MR | Zbl
[5] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czechoslovak Math. J. 52 (2002), No. 3, 513–530. | MR | Zbl
[6] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type. Czechoslovak Math. J. 52 (2002), No. 4, 673–690. | MR
[7] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities. Georgian Math. J. 7 (2000), No. 4, 627–631. | MR | Zbl
[8] Coddington E. A., Levinson N.: Theory of ordinary differential equations. Mc–Graw–Hill Book Company, Inc., New York–Toronto–London, 1955. | MR | Zbl
[9] Gelashvili S. M.: On a boundary value problem for systems of functional differential equations. Arch. Math. (Brno) 20 (1964), 157–168 (In Russian). | MR
[10] Gelashvili S., Kiguradze I.: On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differential Equations Math. Phys. 5 (1995), 1–113. | MR
[11] Hakl R.: On some boundary value problems for systems of linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. (1999), No. 10, 1–16. | MR | Zbl
[12] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. Georgian Math. J. 7 (2000), No. 3, 489–512. | MR
[13] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (Brno) 38 (2002), No. 1, 61–71. | MR | Zbl
[14] Hakl R., Lomtatidze A., Půža B.: On nonnegative solutions of first order scalar functional differential equations. Mem. Differential Equations Math. Phys. 23 (2001), 51–84. | MR | Zbl
[15] Hakl R., Lomtatidze A., Půža B.: On a boundary value problem for first order scalar functional differential equations. Nonlinear Anal. 53 (2003), Nos. 3–4, 391–405. | MR | Zbl
[16] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohem. 127 (2002), No. 4, 509–524. | MR | Zbl
[17] Hakl R., Lomtatidze A., Šremr J.: On nonnegative solutions of a periodic type boundary value problems for first order scalar functional differential equations. Funct. Differ. Equ., to appear. | MR
[18] Hakl R., Lomtatidze A., Šremr J.: On constant sign solutions of a periodic type boundary value problems for first order scalar functional differential equations. Mem. Differential Equations Math. Phys. 26 (2002), 65–90. | MR
[19] Hale J.: Theory of functional differential equations. Springer–Verlag, New York–Heidelberg–Berlin, 1977. | MR | Zbl
[20] Hartman P.: Ordinary differential equations. John Wiley & Sons, Inc., New York–London–Sydney, 1964. | MR | Zbl
[21] Kiguradze I.: Some singular boundary value problems for ordinary differential equations. Tbilisi Univ. Press, Tbilisi, 1975 (In Russian). | MR
[22] Kiguradze I.: Boundary value problems for systems of ordinary differential equations. Current problems in mathematics. Newest results, Vol. 30, 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow (1987) (In Russian). | MR | Zbl
[23] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I. Metsniereba, Tbilisi, 1997 (In Russian). | MR
[24] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47 (1997), No. 2, 341–373. | MR | Zbl
[25] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations. Differ. Uravn. 33 (1997), No. 2, 185–194 (In Russian). | MR
[26] Kiguradze I., Půža B.: On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106–113. | MR | Zbl
[27] Kiguradze I., Půža B.: On the solvability of nonlinear boundary value problems for functional differential equations. Georgian Math. J. 5 (1998), No. 3, 251–262. | MR | Zbl
[28] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers 1999. | MR | Zbl
[29] Schwabik Š., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints. Academia, Praha 1979. | MR | Zbl
[30] Tsitskishvili R. A.: Unique solvability and correctness of a linear boundary value problem for functional–differential equations. Rep. Enlarged Sessions Sem. I. N. Vekua Inst. Appl. Math. 5 (1990), No. 3, 195–198 (In Russian).