Keywords: pseudogroup; moving frame; equivalence of differential equations; differential equations with delay
@article{ARM_2004_40_1_a7,
author = {Tryhuk, V\'aclav and Dlouh\'y, Old\v{r}ich},
title = {The moving frames for differential equations. {II.} {Underdetermined} and functional equations},
journal = {Archivum mathematicum},
pages = {69--88},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2054874},
zbl = {1117.34058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a7/}
}
TY - JOUR AU - Tryhuk, Václav AU - Dlouhý, Oldřich TI - The moving frames for differential equations. II. Underdetermined and functional equations JO - Archivum mathematicum PY - 2004 SP - 69 EP - 88 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a7/ LA - en ID - ARM_2004_40_1_a7 ER -
Tryhuk, Václav; Dlouhý, Oldřich. The moving frames for differential equations. II. Underdetermined and functional equations. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a7/
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966. | MR
[2] Awane A., Goze M.: Pfaffian Systems, k–symplectic Systems. Kluwer Academic Publishers (Dordrecht–Boston–London), 2000. | MR | Zbl
[3] Bryant R., Chern S. S., Goldschmidt H., Griffiths P. A.: Exterior differential systems. Math. Sci. Res. Inst. Publ. 18, Springer - Verlag 1991. | MR | Zbl
[4] Cartan E.: Les systémes différentiels extérieurs et leurs applications géometriques. Hermann & Cie., Paris (1945). | MR | Zbl
[5] Cartan E.: Sur la structure des groupes infinis de transformations. Ann. Ec. Norm. 3-e serie, t. XXI, 1904 (also Oeuvres Complètes, Partie II, Vol 2, Gauthier–Villars, Paris 1953).
[6] Čermák J.: Continuous transformations of differential equations with delays. Georgian Math. J. 2 (1995), 1–8. | MR | Zbl
[7] Chrastina J.: Transformations of differential equations. Equadiff 9 CD ROM, Papers, Masaryk University, Brno 1997, 83–92.
[8] Chrastina J.: The formal theory of differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun., Mathematica 6, 1998. | MR | Zbl
[9] Gardner R. B.: The method of equivalence and its applications. CBMS–NSF Regional Conf. Ser. in Appl. Math. 58, 1989. | MR | Zbl
[10] Neuman F.: On transformations of differential equations and systems with deviating argument. Czechoslovak Math. J. 31 (106) (1981), 87–90. | MR | Zbl
[11] Neuman F.: Simultaneous solutions of a system of Abel equations and differential equations with several delays. Czechoslovak Math. J. 32 (107) (1982), 488–494. | MR
[12] Neuman F.: Transformations and canonical forms of functional–differential equations. Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. | MR
[13] Neuman F.: Global Properties of Linear Ordinary Differential Equations. Math. Appl. (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. | MR | Zbl
[14] Neuman F.: On equivalence of linear functional–differential equations. Results Math. 26 (1994), 354–359. | MR | Zbl
[15] Tryhuk V.: The most general transformations of homogeneous linear differential retarded equations of the first order. Arch. Math. (Brno) 16 (1980), 225–230. | MR
[16] Tryhuk V.: The most general transformation of homogeneous linear differential retarded equations of the $n$-th order. Math. Slovaca 33 (1983), 15–21. | MR
[17] Tryhuk V.: On global transformations of functional-differential equations of the first order. Czechoslovak Math. J. 50 (125) (2000), 279–293. | MR | Zbl
[18] Tryhuk V., Dlouhý O.: The moving frames for differential equations. I. The change of independent variable. Arch. Math. (Brno) 39 (2003), 317–333. | MR | Zbl