A nonlinear differential equation involving reflection of the argument
Archivum mathematicum, Tome 40 (2004) no. 1, pp. 63-68 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the nonlinear boundary value problem involving reflection of the argument \[ -M\Big (\int _{-1}^1\vert u^{\prime }(s)\vert ^2\,ds\Big )\,u^{\prime \prime }(x) = f\big (x,u(x),u(-x)\big ) \quad \quad x \in [-1,1]\,, \] where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin approximations combined with the Brouwer’s fixed point theorem we obtain existence and uniqueness results. A numerical algorithm is also presented.
We study the nonlinear boundary value problem involving reflection of the argument \[ -M\Big (\int _{-1}^1\vert u^{\prime }(s)\vert ^2\,ds\Big )\,u^{\prime \prime }(x) = f\big (x,u(x),u(-x)\big ) \quad \quad x \in [-1,1]\,, \] where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin approximations combined with the Brouwer’s fixed point theorem we obtain existence and uniqueness results. A numerical algorithm is also presented.
Classification : 34B15
Keywords: reflection; Brouwer fixed point; Kirchhoff equation
@article{ARM_2004_40_1_a6,
     author = {Ma, T. F. and Miranda, E. S. and de Souza Cortes, M. B.},
     title = {A nonlinear differential equation involving reflection of the argument},
     journal = {Archivum mathematicum},
     pages = {63--68},
     year = {2004},
     volume = {40},
     number = {1},
     mrnumber = {2054873},
     zbl = {1116.34309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a6/}
}
TY  - JOUR
AU  - Ma, T. F.
AU  - Miranda, E. S.
AU  - de Souza Cortes, M. B.
TI  - A nonlinear differential equation involving reflection of the argument
JO  - Archivum mathematicum
PY  - 2004
SP  - 63
EP  - 68
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a6/
LA  - en
ID  - ARM_2004_40_1_a6
ER  - 
%0 Journal Article
%A Ma, T. F.
%A Miranda, E. S.
%A de Souza Cortes, M. B.
%T A nonlinear differential equation involving reflection of the argument
%J Archivum mathematicum
%D 2004
%P 63-68
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a6/
%G en
%F ARM_2004_40_1_a6
Ma, T. F.; Miranda, E. S.; de Souza Cortes, M. B. A nonlinear differential equation involving reflection of the argument. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a6/

[1] Arosio A., Panizzi S.: On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc. 348 (1996), 305–330. | MR | Zbl

[2] Chipot M., Rodrigues J. F.: On a class of nonlinear nonlocal elliptic problems. RAIRO Modél. Math. Anal. Numér. 26 (1992), 447–467. | MR

[3] Gupta C. P.: Existence and uniqueness theorems for boundary value problems involving reflection of the argument. Nonlinear Anal. 11 (1987), 1075–1083. | MR | Zbl

[4] Hai D. D.: Two point boundary value problem for differential equations with reflection of argument. J. Math. Anal. Appl. 144 (1989), 313–321. | MR | Zbl

[5] Kesavan S.: Topics in Functional Analysis and Applications. Wiley Eastern, New Delhi, 1989. | MR | Zbl

[6] Ma T. F.: Existence results for a model of nonlinear beam on elastic bearings. Appl. Math. Lett. 13 (2000), 11–15. | MR | Zbl

[7] O’Regan D.: Existence results for differential equations with reflection of the argument. J. Austral. Math. Soc. Ser. A 57 (1994), 237–260. | MR | Zbl

[8] Sharma R. K.: Iterative solutions to boundary-value differential equations involving reflection of the argument. J. Comput. Appl. Math. 24 (1988), 319–326. | MR | Zbl

[9] Wiener J., Aftabizadeh A. R.: Boundary value problems for differential equations with reflection of the argument. Int. J. Math. Math. Sci. 8 (1985), 151–163. | MR | Zbl