Ideal-theoretic characterizations of valuation and Prüfer monoids
Archivum mathematicum, Tome 40 (2004) no. 1, pp. 41-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen $r$-system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen $r$-system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
Classification : 13A15, 13F05, 20M12, 20M14, 20M25
Keywords: valuation monoids; Prüfer domains
@article{ARM_2004_40_1_a4,
     author = {Halter-Koch, Franz},
     title = {Ideal-theoretic characterizations of valuation and {Pr\"ufer} monoids},
     journal = {Archivum mathematicum},
     pages = {41--46},
     year = {2004},
     volume = {40},
     number = {1},
     mrnumber = {2054871},
     zbl = {1114.20041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a4/}
}
TY  - JOUR
AU  - Halter-Koch, Franz
TI  - Ideal-theoretic characterizations of valuation and Prüfer monoids
JO  - Archivum mathematicum
PY  - 2004
SP  - 41
EP  - 46
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a4/
LA  - en
ID  - ARM_2004_40_1_a4
ER  - 
%0 Journal Article
%A Halter-Koch, Franz
%T Ideal-theoretic characterizations of valuation and Prüfer monoids
%J Archivum mathematicum
%D 2004
%P 41-46
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a4/
%G en
%F ARM_2004_40_1_a4
Halter-Koch, Franz. Ideal-theoretic characterizations of valuation and Prüfer monoids. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a4/

[1] Aubert K. E.: Some characterizations of valuation rings. Duke Math. J. 21 (1954), 517–525. | MR

[2] Garcia J. M., Jaros P., Santos E.: Prüfer $*$-multiplication domains and torsion theories. Comm. Algebra 27 (1999), 1275–1295. | MR

[3] Halter-Koch F.: Ideal Systems. Marcel Dekker 1998. | MR | Zbl

[4] Halter-Koch F.,: Construction of ideal systems having nice noetherian properties. Commutative Rings in a Non-Noetherian Setting (S. T. Chapman and S. Glaz, eds.), Kluwer 2000, 271–285. | MR

[5] Halter-Koch F.: Characterization of Prüfer multiplication monoids and domains by means of spectral module systems. Monatsh. Math. 139 (2003), 19–31. | MR | Zbl

[6] Halter-Koch F.: Valuation Monoids, Defining Systems and Approximation Theorems. Semigroup Forum 55 (1997), 33–56. | MR | Zbl