A note on bidifferential calculi and bihamiltonian systems
Archivum mathematicum, Tome 40 (2004) no. 1, pp. 17-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.
In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.
Classification : 37J35, 53D17
Keywords: Frölicher-Nijenhuis; Lenard scheme; bidifferential calculi
@article{ARM_2004_40_1_a1,
     author = {Guha, Partha},
     title = {A note on bidifferential calculi and bihamiltonian systems},
     journal = {Archivum mathematicum},
     pages = {17--22},
     year = {2004},
     volume = {40},
     number = {1},
     mrnumber = {2054868},
     zbl = {1110.37043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/}
}
TY  - JOUR
AU  - Guha, Partha
TI  - A note on bidifferential calculi and bihamiltonian systems
JO  - Archivum mathematicum
PY  - 2004
SP  - 17
EP  - 22
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/
LA  - en
ID  - ARM_2004_40_1_a1
ER  - 
%0 Journal Article
%A Guha, Partha
%T A note on bidifferential calculi and bihamiltonian systems
%J Archivum mathematicum
%D 2004
%P 17-22
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/
%G en
%F ARM_2004_40_1_a1
Guha, Partha. A note on bidifferential calculi and bihamiltonian systems. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/

[1] Crampin M., Sarlet W., Thompson G.: Bi-Differential Calculi and bi-Hamiltonian systems. J. Phys. A 33 (2000), 177–180. | MR | Zbl

[2] Dimakis A., Müller–Hoissen F.: Bi-differential calculi and integrable models. J. Phys. A 33 (2000), 957-974. | MR | Zbl

[3] Dimakis A., Müller-Hoissen F.: Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems. nlin.SI/0008016, and the references therein. | Zbl

[4] Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, No. 5 (1978), 1156–1162. | MR

[5] Magri F.: Eight lectures on integrable systems. Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. | MR

[6] Michor P.: A generalization of Hamiltonian mechanics. J. Geom. Phys. 2, No. 2 (1985), 67–82. | MR | Zbl