Keywords: Frölicher-Nijenhuis; Lenard scheme; bidifferential calculi
@article{ARM_2004_40_1_a1,
author = {Guha, Partha},
title = {A note on bidifferential calculi and bihamiltonian systems},
journal = {Archivum mathematicum},
pages = {17--22},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2054868},
zbl = {1110.37043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/}
}
Guha, Partha. A note on bidifferential calculi and bihamiltonian systems. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ARM_2004_40_1_a1/
[1] Crampin M., Sarlet W., Thompson G.: Bi-Differential Calculi and bi-Hamiltonian systems. J. Phys. A 33 (2000), 177–180. | MR | Zbl
[2] Dimakis A., Müller–Hoissen F.: Bi-differential calculi and integrable models. J. Phys. A 33 (2000), 957-974. | MR | Zbl
[3] Dimakis A., Müller-Hoissen F.: Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems. nlin.SI/0008016, and the references therein. | Zbl
[4] Magri F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, No. 5 (1978), 1156–1162. | MR
[5] Magri F.: Eight lectures on integrable systems. Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. | MR
[6] Michor P.: A generalization of Hamiltonian mechanics. J. Geom. Phys. 2, No. 2 (1985), 67–82. | MR | Zbl