Keywords: Picone’s identity; forced quasilinear equation; principal solution
@article{ARM_2003_39_4_a8,
author = {Do\v{s}l\'y, Ond\v{r}ej and Jaro\v{s}, Jaroslav},
title = {A singular version of {Leighton's} comparison theorem for forced quasilinear second order differential equations},
journal = {Archivum mathematicum},
pages = {335--345},
year = {2003},
volume = {39},
number = {4},
mrnumber = {2032106},
zbl = {1116.34316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a8/}
}
TY - JOUR AU - Došlý, Ondřej AU - Jaroš, Jaroslav TI - A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations JO - Archivum mathematicum PY - 2003 SP - 335 EP - 345 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a8/ LA - en ID - ARM_2003_39_4_a8 ER -
%0 Journal Article %A Došlý, Ondřej %A Jaroš, Jaroslav %T A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations %J Archivum mathematicum %D 2003 %P 335-345 %V 39 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a8/ %G en %F ARM_2003_39_4_a8
Došlý, Ondřej; Jaroš, Jaroslav. A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 335-345. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a8/
[1] Došlý, O.: Methods of oscillation theory of half–linear second order differential equations. Czech. Math. J. 125 (2000), 657–671. | MR
[2] Došlý, O.: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca, 50 (2000), 67–79. | MR
[3] Došlý, O.: Half-linear oscillation theory. Stud. Univ. Žilina, Ser. Math. Phys. 13 (2001), 65–73. | MR | Zbl
[4] Došlý, O., Elbert, Á.: Integral characterization of principal solution of half-linear second order differential equations. Studia Sci. Math. Hungar. 36 (2000), 455-469. | MR
[5] Došlý, O., Řezíčková, J.: Regular half-linear second order differential equations. Arch. Math. (Brno) 39 (2003), 233–245. | MR
[6] Elbert, Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. | MR
[7] Elbert, Á. and Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations. Advances in Math. Sci. Appl. 18 (1998), 745–759.
[8] Jaroš, J., Kusano, T.: A Picone type identity for half-linear differential equations. Acta Math. Univ. Comenianae 68 (1999), 127–151. | MR
[9] Jaroš, J., Kusano, T., Yoshida, N.: Forced superlinear oscillations via Picone’s identity. Acta Math. Univ. Comenianae LXIX (2000), 107–113. | MR
[10] Jaroš, J., Kusano, T., Yoshida, N.: Generalized Picone’s formula and forced oscillation in quasilinear differential equations of the second order. Arch. Math. (Brno) 38 (2002), 53–59. | MR
[11] Komkov, V.: A generalization of Leighton’s variational theorem. Appl. Anal. 2 (1973), 377–383. | MR
[12] Leighton, W.: Comparison theorems for linear differential equations of second order. Proc. Amer. Math. Soc. 13 (1962), 603–610. | MR | Zbl
[13] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. | MR | Zbl
[14] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR
[15] Müller-Pfeiffer, E.: Comparison theorems for Sturm-Liouville equations. Arch. Math. 22 (1986), 65–73. | MR
[16] Müller-Pfeiffer, E.: Sturm comparison theorems for non-selfadjoint differential equations on non-compact intervals. Math. Nachr. 159 (1992), 291–298. | MR
[17] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equation, Acad. Press, New York, 1968. | MR | Zbl