On the $H$-property of some Banach sequence spaces
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 309-316
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.
In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.
Classification : 46B20, 46B45
Keywords: H-property; property (G); Cesàro sequence spaces; Luxemburg norm
@article{ARM_2003_39_4_a6,
     author = {Suantai, Suthep},
     title = {On the $H$-property of some {Banach} sequence spaces},
     journal = {Archivum mathematicum},
     pages = {309--316},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2032104},
     zbl = {1115.46012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a6/}
}
TY  - JOUR
AU  - Suantai, Suthep
TI  - On the $H$-property of some Banach sequence spaces
JO  - Archivum mathematicum
PY  - 2003
SP  - 309
EP  - 316
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a6/
LA  - en
ID  - ARM_2003_39_4_a6
ER  - 
%0 Journal Article
%A Suantai, Suthep
%T On the $H$-property of some Banach sequence spaces
%J Archivum mathematicum
%D 2003
%P 309-316
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a6/
%G en
%F ARM_2003_39_4_a6
Suantai, Suthep. On the $H$-property of some Banach sequence spaces. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 309-316. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a6/

[1] Chen, S. T.: Geometry of Orlicz spaces, Dissertationes Math. 1996, pp. 356. | MR

[2] Cui, Y. A. and Hudzik, H.: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Sci. Math. (Szeged ) 65 (1999), 179–187. | MR

[3] Cui, Y. A., Hudzik, H. and Meng, C.: On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms. Acta Math. Hungar. 80 (1-2) (1998), 143–154. | MR

[4] Cui, Y. A., Hudzik, H. and Pliciennik, R.: Banach-Saks property in some Banach sequence spaces. Annales Math. Polonici 65 (1997), 193–202. | MR

[5] Cui, Y. A. and Meng, C.: Banach-Saks property and property ($\beta $) in Cesàro sequence spaces. SEA. Bull. Math. 24 (2000), 201–210. | MR

[6] Diestel, J.: Geometry of Banach Spaces - Selected Topics. Springer-Verlag, 1984. | MR

[7] Grzaslewicz, R., Hudzik, H. and Kurc, W.: Extreme and exposed points in Orlicz spaces. Canad. J. Math. 44 (1992), 505–515. | MR

[8] Hudzik, H.: Orlicz spaces without strongly extreme points and without H-points. Canad. Math. Bull. 35 (1992), 1–5. | MR

[9] Hudzik, H. and Pallaschke, D.: On some convexity properties of Orlicz sequence spaces. Math. Nachr. 186 (1997), 167–185. | MR

[10] Lee, P. Y.: Cesàro sequence spaces. Math. Chronicle, New Zealand 13 (1984), 29–45. | MR | Zbl

[11] Lin, B. L., Lin, P. K. and Troyanski, S. L.: Characterization of denting points. Proc. Amer. Math. Soc. 102 (1988), 526–528. | MR

[12] Liu, Y. Q., Wu, B. E. and Lee, Y. P.: Method of sequence spaces. Guangdong of Science and Technology Press (1996 (in Chinese)).

[13] Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, Springer-Verlag, (1983). | MR | Zbl

[14] Pluciennik, R., Wang, T. F. and Zhang, Y. L.: H-points and Denting Points in Orlicz Spaces. Comment. Math. Prace Mat. 33 (1993), 135–151. | MR

[15] Sanhan, W.: On geometric properties of some Banach sequence spaces. Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.

[16] Shue, J. S.: Cesàro sequence spaces. Tamkang J. Math. 1 (1970), 143–150.