Existence for nonconvex integral inclusions via fixed points
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 293-298 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.
We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.
Classification : 34A60, 45G10, 45N05, 47N20
Keywords: integral inclusions; contractive set-valued maps; fixed point
@article{ARM_2003_39_4_a4,
     author = {Cernea, Aurelian},
     title = {Existence for nonconvex integral inclusions via fixed points},
     journal = {Archivum mathematicum},
     pages = {293--298},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2032102},
     zbl = {1113.45014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - Existence for nonconvex integral inclusions via fixed points
JO  - Archivum mathematicum
PY  - 2003
SP  - 293
EP  - 298
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/
LA  - en
ID  - ARM_2003_39_4_a4
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T Existence for nonconvex integral inclusions via fixed points
%J Archivum mathematicum
%D 2003
%P 293-298
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/
%G en
%F ARM_2003_39_4_a4
Cernea, Aurelian. Existence for nonconvex integral inclusions via fixed points. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 293-298. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/

[1] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. LNM 580, Springer, Berlin, 1977. | MR | Zbl

[2] Cernea A.: A Filippov type existence theorem for infinite horizon operational differential inclusions. Stud. Cerc. Mat. 50 (1998), 15–22. | MR | Zbl

[3] Cernea A.: An existence theorem for some nonconvex hyperbolic differential inclusions. Mathematica 45(68) (2003), 101–106. | MR | Zbl

[4] Kannai Z., Tallos P.: Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged) 63 (1995), 197–207. | MR | Zbl

[5] Lim T. C.: On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441. | MR | Zbl

[6] Petruşel A.: Integral inclusions. Fixed point approaches. Comment. Math. Prace Mat., 40 (2000), 147–158. | MR | Zbl

[7] Tallos P.: A Filippov-Gronwall type inequality in infinite dimensional space. Pure Math. Appl. 5 (1994), 355–362. | MR

[8] Zhu Q. J.: A relaxation theorem for a Banach space integral-inclusion with delays and shifts. J. Math. Anal. Appl. 188 (1994), 1–24. | MR | Zbl