Keywords: integral inclusions; contractive set-valued maps; fixed point
@article{ARM_2003_39_4_a4,
author = {Cernea, Aurelian},
title = {Existence for nonconvex integral inclusions via fixed points},
journal = {Archivum mathematicum},
pages = {293--298},
year = {2003},
volume = {39},
number = {4},
mrnumber = {2032102},
zbl = {1113.45014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/}
}
Cernea, Aurelian. Existence for nonconvex integral inclusions via fixed points. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 293-298. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a4/
[1] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. LNM 580, Springer, Berlin, 1977. | MR | Zbl
[2] Cernea A.: A Filippov type existence theorem for infinite horizon operational differential inclusions. Stud. Cerc. Mat. 50 (1998), 15–22. | MR | Zbl
[3] Cernea A.: An existence theorem for some nonconvex hyperbolic differential inclusions. Mathematica 45(68) (2003), 101–106. | MR | Zbl
[4] Kannai Z., Tallos P.: Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged) 63 (1995), 197–207. | MR | Zbl
[5] Lim T. C.: On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441. | MR | Zbl
[6] Petruşel A.: Integral inclusions. Fixed point approaches. Comment. Math. Prace Mat., 40 (2000), 147–158. | MR | Zbl
[7] Tallos P.: A Filippov-Gronwall type inequality in infinite dimensional space. Pure Math. Appl. 5 (1994), 355–362. | MR
[8] Zhu Q. J.: A relaxation theorem for a Banach space integral-inclusion with delays and shifts. J. Math. Anal. Appl. 188 (1994), 1–24. | MR | Zbl