Approximation of some regular distribution in $S'(\mathcal{R})$ by finite, convex, linear combinations of Blaschke distributions
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 287-292 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 30D50, 46E15, 46F05, 46F20
Keywords: Blaschke product; upper Blaschke distribution; tempered distribution; approximation
@article{ARM_2003_39_4_a3,
     author = {Manova Erakovi\'c, Vesna},
     title = {Approximation of some regular distribution in $S'(\mathcal{R})$ by finite, convex, linear combinations of {Blaschke} distributions},
     journal = {Archivum mathematicum},
     pages = {287--292},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2028739},
     zbl = {1115.46032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a3/}
}
TY  - JOUR
AU  - Manova Eraković, Vesna
TI  - Approximation of some regular distribution in $S'(\mathcal{R})$ by finite, convex, linear combinations of Blaschke distributions
JO  - Archivum mathematicum
PY  - 2003
SP  - 287
EP  - 292
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a3/
LA  - en
ID  - ARM_2003_39_4_a3
ER  - 
%0 Journal Article
%A Manova Eraković, Vesna
%T Approximation of some regular distribution in $S'(\mathcal{R})$ by finite, convex, linear combinations of Blaschke distributions
%J Archivum mathematicum
%D 2003
%P 287-292
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a3/
%G en
%F ARM_2003_39_4_a3
Manova Eraković, Vesna. Approximation of some regular distribution in $S'(\mathcal{R})$ by finite, convex, linear combinations of Blaschke distributions. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 287-292. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a3/

[1] Bremerman, G.: Distributions, complex variables, and Fourier transforms. Mir, Moskva (1968). | MR

[2] Carmichael, R. D. and Mitrović, D.: Distributions and analytic functions. John Wiley and Sons, Inc., New York (1988).

[3] Carmichael, R. D. and Richters, S. P.: Holomorphic functions in tubes which have distributional boundary value and which are $H^p$ functions. Siam J. Math. Anal. 14, No. 3 (1983), 596–621. | MR

[4] Duren, P. L.: Theory of $H^p$ Spaces. Acad. Press, New York (1970). | MR

[5] Garnett, J.: Bounded analytic function. Acad. Press, New York (1981), 467pp. | MR

[6] Koosis, P.: Introduction to $H^p$ spaces. Mir, Moskva (1984). | MR

[7] Manova Eraković, V.: Introduction of Blaschke distributions and approximation of distributions in $D^{\prime }$ by a sequence of finite Blaschke distributions. Mat. Bilten, 24 (L), Skopje (2000). | MR

[8] Schwartz, L.: Theorie des distributions. Tome I, Tome II, Herman and C$^{\text{ie}}$, Paris (1950, 1951). | MR | Zbl

[9] Stanković, B., Pilipović, S.: Teorija distribucija. PMF, Novi Sad (1988). | MR