Keywords: locally convex space; measurable map; random approximation; characterization
@article{ARM_2003_39_4_a1,
author = {Khan, Abdul Rahim and Hussain, Nawab},
title = {Characterizations of random approximations},
journal = {Archivum mathematicum},
pages = {271--275},
year = {2003},
volume = {39},
number = {4},
mrnumber = {2028737},
zbl = {1112.60050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/}
}
Khan, Abdul Rahim; Hussain, Nawab. Characterizations of random approximations. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 271-275. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/
[1] Beg I.: A characterization of random approximations. Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. | MR | Zbl
[2] Beg I., Shahzad N.: Random approximations and random fixed point theorems. J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. | MR | Zbl
[3] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. | MR | Zbl
[4] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | MR | Zbl
[5] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set contractive random maps. Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. | MR | Zbl
[6] O’Regan D.: A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces. Comput. Math. Appl. 30(9) (1995), 39–49. | MR | Zbl
[7] Papageorgiou N. S.: Fixed points and best approximations for measurable multifunctions with stochastic domain. Tamkang J. Math. 23 (1992), no. 3, 197–203. | MR | Zbl
[8] Rao G. S., Elumalai S.: Approximation and strong approximation in locally convex spaces. Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. | MR | Zbl
[9] Rudin W.: Functional Analysis, McGraw-Hill Book Company. New York, 1973. | MR
[10] Sehgal V. M., Singh S. P.: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94. | MR | Zbl
[11] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations in cones. J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. | MR
[12] Thaheem A. B.: Existence of best approximations. Port. Math. 42 (1983-84), no. 4, 435–440. | MR
[13] Tukey J. W.: Some notes on the separation axioms of convex sets. Port. Math. 3 (1942), 95–102. | MR