Characterizations of random approximations
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 271-275
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some characterizations of random approximations are obtained in a locally convex space through duality theory.
Some characterizations of random approximations are obtained in a locally convex space through duality theory.
Classification : 41A65, 47H10, 47H40, 60H25
Keywords: locally convex space; measurable map; random approximation; characterization
@article{ARM_2003_39_4_a1,
     author = {Khan, Abdul Rahim and Hussain, Nawab},
     title = {Characterizations of random approximations},
     journal = {Archivum mathematicum},
     pages = {271--275},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2028737},
     zbl = {1112.60050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/}
}
TY  - JOUR
AU  - Khan, Abdul Rahim
AU  - Hussain, Nawab
TI  - Characterizations of random approximations
JO  - Archivum mathematicum
PY  - 2003
SP  - 271
EP  - 275
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/
LA  - en
ID  - ARM_2003_39_4_a1
ER  - 
%0 Journal Article
%A Khan, Abdul Rahim
%A Hussain, Nawab
%T Characterizations of random approximations
%J Archivum mathematicum
%D 2003
%P 271-275
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/
%G en
%F ARM_2003_39_4_a1
Khan, Abdul Rahim; Hussain, Nawab. Characterizations of random approximations. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 271-275. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a1/

[1] Beg I.: A characterization of random approximations. Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. | MR | Zbl

[2] Beg I., Shahzad N.: Random approximations and random fixed point theorems. J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. | MR | Zbl

[3] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. | MR | Zbl

[4] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | MR | Zbl

[5] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set contractive random maps. Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. | MR | Zbl

[6] O’Regan D.: A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces. Comput. Math. Appl. 30(9) (1995), 39–49. | MR | Zbl

[7] Papageorgiou N. S.: Fixed points and best approximations for measurable multifunctions with stochastic domain. Tamkang J. Math. 23 (1992), no. 3, 197–203. | MR | Zbl

[8] Rao G. S., Elumalai S.: Approximation and strong approximation in locally convex spaces. Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. | MR | Zbl

[9] Rudin W.: Functional Analysis, McGraw-Hill Book Company. New York, 1973. | MR

[10] Sehgal V. M., Singh S. P.: On random approximations and a random fixed point theorem for set valued mappings. Proc. Amer. Math. Soc. 95 (1985), 91–94. | MR | Zbl

[11] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations in cones. J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. | MR

[12] Thaheem A. B.: Existence of best approximations. Port. Math. 42 (1983-84), no. 4, 435–440. | MR

[13] Tukey J. W.: Some notes on the separation axioms of convex sets. Port. Math. 3 (1942), 95–102. | MR