The complex geometry of an integrable system
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
Classification : 14H70, 37J35, 70G55, 70H06
Keywords: integrable systems; curves; abelian varieties
@article{ARM_2003_39_4_a0,
     author = {Lesfari, Ahmed},
     title = {The complex geometry of an integrable system},
     journal = {Archivum mathematicum},
     pages = {257--270},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2028736},
     zbl = {1110.70022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a0/}
}
TY  - JOUR
AU  - Lesfari, Ahmed
TI  - The complex geometry of an integrable system
JO  - Archivum mathematicum
PY  - 2003
SP  - 257
EP  - 270
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a0/
LA  - en
ID  - ARM_2003_39_4_a0
ER  - 
%0 Journal Article
%A Lesfari, Ahmed
%T The complex geometry of an integrable system
%J Archivum mathematicum
%D 2003
%P 257-270
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a0/
%G en
%F ARM_2003_39_4_a0
Lesfari, Ahmed. The complex geometry of an integrable system. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270. http://geodesic.mathdoc.fr/item/ARM_2003_39_4_a0/

[1] Adler M., van Moerbeke P.: The algebraic complete integrability of geodesic flow on $SO(4)$. Invent. Math. 67 (1982), 297–331. | MR

[2] Arbarello E., Cornalba M., Griffiths P. A., Harris J.: Geometry of algebraic curves I. Springer-Verlag, 1994.

[3] Arnold V. I.: Mathematical methods in classical mechanics. Springer-Verlag, Berlin-Heidelberg-New York, 1978. | MR

[4] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B.: Algebro-Geometric approach to nonlinear integrable equations. Springer-Verlag, 1994.

[5] Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A.: Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. | MR

[6] Griffiths P. A., Harris J.: Principles of algebraic geometry. Wiley-Interscience, 1978. | MR | Zbl

[7] Haine L.: Geodesic flow on $SO(4)$ and Abelian surfaces. Math. Ann. 263 (1983), 435–472. | MR | Zbl

[8] Lesfari A.: Une approche systématique à la résolution du corps solide de Kowalewski. C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. | MR

[9] Lesfari A.: Abelian surfaces and Kowalewski’s top. Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. | MR | Zbl

[10] Lesfari A.: On affine surface that can be completed by a smooth curve. Results Math. 35 (1999), 107–118. | MR | Zbl

[11] Lesfari A.: Une méthode de compactification de variétés liées aux systèmes dynamiques. Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157.

[12] Lesfari A.: Geodesic flow on $SO(4)$, Kac-Moody Lie algebra and singularities in the complex t-plane. Publ. Mat. 43 (1999), 261–279. | MR

[13] Lesfari A.: Completely integrable systems: Jacobi’s heritage. J. Geom. Phys. 31 (1999), 265–286. | MR | Zbl

[14] Lesfari A.: The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case. Nonlinear Differential Equations Appl. 8 (2001), 1–13. | MR | Zbl

[15] Lesfari A.: The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability. Rep. Math. Phys. 47 (2001), 9–20. | MR | Zbl

[16] Lesfari A.: A new class of integrable systems. Arch. Math. 77 (2001), 347–353. | MR | Zbl

[17] Lesfari A.: The Hénon-Heiles system via the Kowalewski-Painlevé analysis. Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N${{}^{\circ }}$4 (2003), 305–330. | MR

[18] Lesfari A.: Le théorème d’Arnold-Liouville et ses conséquences. Elem. Math. 58, Issue 1 (2003), 6–20. | MR | Zbl

[19] Lesfari A.: Le système différentiel de Hénon-Heiles et les variétés Prym. Pacific J. Math. 212, No. 1 (2003), 125–132. | MR

[20] Mumford D.: Tata lectures on theta II. Progr. Math., Birkhaüser, Boston, 1982.

[21] Mumford D.: On the equations defining Abelian varieties. Invent. Math. 1 (1966), 287–354. | MR | Zbl

[22] Perelomov A. M.: Integrable systems of classical mechanics and Lie algebras. Birkhäuser, 1990. | MR | Zbl