Keywords: natural affinor; natural bundle; natural transformation
@article{ARM_2003_39_3_a9,
author = {Michalec, Pawe{\l}},
title = {The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$},
journal = {Archivum mathematicum},
pages = {247--256},
year = {2003},
volume = {39},
number = {3},
mrnumber = {2010725},
zbl = {1112.58300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a9/}
}
Michalec, Paweł. The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 247-256. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a9/
[1] Doupovec M., Kolář I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205-209. | MR
[2] Doupovec M., Kurek J.: Torsions of connections of higher order cotangent bundles. Czech. Math. J. (to appear). | MR
[3] Gancarzewicz J., Kolář I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100. | MR
[4] Kolář I., Modugno M.: Torsion of connections on some natural bundles. Diff. Geom. and Appl. 2(1992), 1-16. | MR
[5] Kolář. I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin 1993. | MR | Zbl
[6] Kurek J.: Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175-180. | MR
[7] Mikulski W. M.: The natural affinors on dual r-jet prolongation of bundles of 2-forms. Ann. UMCS Lublin 2002, (to appear). | MR
[8] Mikulski W. M.: Natural affinors on $r$-jet prolongation of the tangant bundle. Arch. Math. (Brno) 34 (2) (1998). 321-328. | MR
[9] Mikulski W. M.: The natural affinors on $ \otimes ^k T^{(k)}$. Note di Matematica vol. 19-n. 2. (1999), 269-274. | MR
[10] Mikulski W. M.: The natural affinors on generalized higher order tangent bundles. Rend. Mat. Roma vol. 21. (2001). (to appear). | MR | Zbl
[11] Mikulski W. M.: Natural affinors on $(J^{r,s,q}(\cdot ,{\bold R}^{1,1})_0)^\ast $. Coment. Math. Carolinae 42 (2001), (to appear). | MR | Zbl
[12] Zajtz A.: On the order of natural operators and liftings. Ann. Polon. Math. 49 (1988), 169-178. | MR