Regular half-linear second order differential equations
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 233-245
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the concept of the regular (nonoscillatory) half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0\,,\quad \Phi (x):=|x|^{p-2}x\,,\quad p>1 \qquad \mathrm {{(*)}}\] and we show that if (*) is regular, a solution $x$ of this equation such that $x^{\prime }(t)\ne 0$ for large $t$ is principal if and only if \[ \int ^\infty \frac{dt}{r(t)x^2(t)|x^{\prime }(t)|^{p-2}}=\infty \,. \] Conditions on the functions $r,c$ are given which guarantee that (*) is regular.
We introduce the concept of the regular (nonoscillatory) half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0\,,\quad \Phi (x):=|x|^{p-2}x\,,\quad p>1 \qquad \mathrm {{(*)}}\] and we show that if (*) is regular, a solution $x$ of this equation such that $x^{\prime }(t)\ne 0$ for large $t$ is principal if and only if \[ \int ^\infty \frac{dt}{r(t)x^2(t)|x^{\prime }(t)|^{p-2}}=\infty \,. \] Conditions on the functions $r,c$ are given which guarantee that (*) is regular.
Classification : 34C10
Keywords: regular half-linear equation; principal solution; Picone’s identity; Riccati-type equation
@article{ARM_2003_39_3_a8,
     author = {Do\v{s}l\'y, Ond\v{r}ej and \v{R}ezn{\'\i}\v{c}kov\'a, Jana},
     title = {Regular half-linear second order differential equations},
     journal = {Archivum mathematicum},
     pages = {233--245},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {2010724},
     zbl = {1119.34029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a8/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Řezníčková, Jana
TI  - Regular half-linear second order differential equations
JO  - Archivum mathematicum
PY  - 2003
SP  - 233
EP  - 245
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a8/
LA  - en
ID  - ARM_2003_39_3_a8
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Řezníčková, Jana
%T Regular half-linear second order differential equations
%J Archivum mathematicum
%D 2003
%P 233-245
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a8/
%G en
%F ARM_2003_39_3_a8
Došlý, Ondřej; Řezníčková, Jana. Regular half-linear second order differential equations. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 233-245. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a8/

[1] Allegretto W., Huang Y. X.: A Picone’s identity for the $p$-Laplacian and applications. Nonlin. Anal. 32 (1998), 819–830. | MR | Zbl

[2] Cecchi M., Došlá Z., Marini M.: Principal solutions and minimal set for quasilinear differential equations. to appear in Dynam. Syst. Appl. | MR

[3] Došlý O., Elbert Á.: Integral characterization of the principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), No. 3-4, 455–469. | MR

[4] Došlý O., Lomtatidze A.: Oscillation and nonoscillation criteria for half-linear second order differential equations. submitted. | Zbl

[5] Elbert Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.

[6] Elbert Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. | MR | Zbl

[7] Elbert Á.: The Wronskian and the half-linear differential equations. Studia Sci. Math. Hungar. 15 (1980), 101–105. | MR | Zbl

[8] Elbert Á., Kusano T.: Principal solutions of nonoscillatory half-linear differential equations. Advances in Math. Sci. Appl. 18 (1998), 745–759. | MR

[9] Elbert Á., Schneider A.: Perturbation of the half-linear Euler differential equations. Result. Math. 37 (2000), 56–83. | MR

[10] Hartman P.: Ordinary Differential Equations. John Wiley, New York, 1964. | MR | Zbl

[11] Jaroš J., Kusano T.: A Picone type identity for half-linear differential equations. Acta Math. Univ. Comenianea 68 (1999), 137–151. | MR

[12] Leighton W., Morse M.: Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936) 252–286. | MR | Zbl

[13] Lorch L., Newman J. D.: A supplement to the Sturm separation theorem, with applications. Amer. Math. Monthly 72 (1965), 359–366, 390. | MR | Zbl

[14] Mirzov J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–426. | MR | Zbl

[15] Mirzov J. D.: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR