Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 213-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions are established for the oscillation of proper solutions of the system \begin{align} u_1^{\prime }(t) =p(t)u_2(\sigma (t))\,, \\ u_2^{\prime }(t) =-q(t)u_1(\tau (t))\,, \end{align} where $p,\,q: R_{+}\rightarrow R_{+}$ are locally summable functions, while $\tau $ and $\sigma : R_{+}\rightarrow R_{+}$ are continuous and continuously differentiable functions, respectively, and $\lim \limits _{t\rightarrow +\infty } \tau (t)=+\infty $, $\lim \limits _{t\rightarrow +\infty } \sigma (t)=+\infty $.
Sufficient conditions are established for the oscillation of proper solutions of the system \begin{align} u_1^{\prime }(t) =p(t)u_2(\sigma (t))\,, \\ u_2^{\prime }(t) =-q(t)u_1(\tau (t))\,, \end{align} where $p,\,q: R_{+}\rightarrow R_{+}$ are locally summable functions, while $\tau $ and $\sigma : R_{+}\rightarrow R_{+}$ are continuous and continuously differentiable functions, respectively, and $\lim \limits _{t\rightarrow +\infty } \tau (t)=+\infty $, $\lim \limits _{t\rightarrow +\infty } \sigma (t)=+\infty $.
Classification : 34K06, 34K11, 34K25
Keywords: two-dimensional differential system; proper solution; oscillatory system
@article{ARM_2003_39_3_a7,
     author = {Koplatadze, R. and Partsvania, N. L. and Stavroulakis, I. P.},
     title = {Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments},
     journal = {Archivum mathematicum},
     pages = {213--232},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {2010723},
     zbl = {1116.34331},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a7/}
}
TY  - JOUR
AU  - Koplatadze, R.
AU  - Partsvania, N. L.
AU  - Stavroulakis, I. P.
TI  - Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments
JO  - Archivum mathematicum
PY  - 2003
SP  - 213
EP  - 232
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a7/
LA  - en
ID  - ARM_2003_39_3_a7
ER  - 
%0 Journal Article
%A Koplatadze, R.
%A Partsvania, N. L.
%A Stavroulakis, I. P.
%T Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments
%J Archivum mathematicum
%D 2003
%P 213-232
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a7/
%G en
%F ARM_2003_39_3_a7
Koplatadze, R.; Partsvania, N. L.; Stavroulakis, I. P. Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 213-232. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a7/

[1] Chantladze T., Kandelaki N., Lomtatidze, A : Oscillation and nonoscillation criteria for a second order linear equation. Georgian Math. J. 6 (1999), No. 5, 401–414. | MR | Zbl

[2] Chantladze T., Kandelaki N., Lomtatidze A.: On oscillation and nonoscillation of second order half-linear equation. Georgian Math. J. 7 (2000), No. 1, 329–346. | MR

[3] Coppell W. A.: Stability and asymptotic behaviour of differential equations. Heat and Co., Boston, 1965.

[4] Hille E.: Non-oscillation theorems. Trans. Amer. Math. Soc.64 (1948), 234–252. | MR | Zbl

[5] Koplatadze R. G.: Criteria for the oscillation of solutions of second order differential inequalities and equations with a retarded argument. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 17 (1986), 104–121. | MR

[6] Koplatadze R.: On oscillatory properties of solutions of functional differential equations. Mem. Differential Equations Math. Phys. 3 (1994), 1–179. | MR | Zbl

[7] Koplatadze R., Kvinikadze G., Stavroulakis I. P.: Oscillation of second order linear delay differential equations. Funct. Differ. Equ. 7 (2000), No. 1–2, 121–145. | MR | Zbl

[8] Koplatadze R., Partsvania N.: Oscillatory properties of solutions of two-dimensional differential systems with deviated arguments. (Russian) Differentsial’nye Uravneniya 33 (1997), No. 10, 1312–1320; translation in Differential Equations 33 (1997), No. 10, 1318–1326 (1998). | MR

[9] Lomtatidze A.: Oscillation and nonoscillation criteria for second order linear differential equation. Georgian Math. J. 4 (1997), No. 2, 129–138. | MR

[10] Lomtatidze A., Partsvania N.: Oscillation and nonoscillation criteria for two-dimensional systems of first order linear ordinary differential equations. Georgian Math. J. 6 (1999), No. 3, 285–298. | MR | Zbl

[11] Mirzov J. D.: Asymptotic behavior of solutions of systems of nonlinear non-autonomous ordinary differential equations. (Russian) Maikop 1993.

[12] Nehari Z.: Oscillation criteria for second-order linear differential equations. Trans. Amer. Math. Soc. 85 (1957), 428–445. | MR | Zbl

[13] Partsvania N.: On oscillation of solutions of second order systems of deviated differential equations. Georgian Math. J. 3 (1996), No. 6, 571–582. | MR | Zbl