Keywords: quasilinearization; monotone iterations; quadratic convergence
@article{ARM_2003_39_3_a5,
author = {Jankowski, Tadeusz},
title = {An extension of the method of quasilinearization},
journal = {Archivum mathematicum},
pages = {201--208},
year = {2003},
volume = {39},
number = {3},
mrnumber = {2010721},
zbl = {1116.34304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/}
}
Jankowski, Tadeusz. An extension of the method of quasilinearization. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 201-208. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/
[1] Bellman, R.: Methods of Nonlinear Analysis. Vol. II, Academic Press, New York 1973. | MR | Zbl
[2] Bellman, R. and Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York 1965. | MR
[3] Jankowski, T. and Lakshmikantham, V.: Monotone iterations for differential equations with a parameter. J. Appl. Math. Stoch. Anal. 10 (1997), 273–278. | MR
[4] Jankowski, T. and McRae, F. A.: An extension of the method of quasilinearization for differential problems with a parameter. Nonlinear Stud. 6 (1999), 21–44. | MR
[5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman 1985. | MR
[6] Lakshmikantham, V. and Malek, S.: Generalized quasilenearization. Nonlinear World 1 (1994), 59–63. | MR
[7] Lakshmikantham, V., Leela, S. and Sivasundaram, S.: Extensions of the Method of Quasilinearization. J. Optimization Theory Appl. Vol. 87 (1995), 379–401. | MR
[8] Lakshmikantham, V. and Vatsala, A. S.: Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publishers, Dordrecht 1998. | MR
[9] Lakshmikantham, V., Leela, S. and McRae, F. A.: Improved Generalized Quasilinearization Method. Nonlinear Analysis 24 (1995), 1627–1637. | MR
[10] Lakshmikantham, V. and Shahzad, N.: Further Generalization of Generalized Quasilinearization Method. J. Appl. Math. Stoch. Anal. 7 (1994), 545–552. | MR
[11] Shahzad, N. and Vatsala, A. S.: An Extension of the Method of Generalized Quasilinearization for Second Order Boundary Value Problems. Appl. Anal. 58 (1995), 77–83. | MR