An extension of the method of quasilinearization
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 201-208 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The method of quasilinearization is a well–known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems.
The method of quasilinearization is a well–known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems.
Classification : 34A12, 34A45
Keywords: quasilinearization; monotone iterations; quadratic convergence
@article{ARM_2003_39_3_a5,
     author = {Jankowski, Tadeusz},
     title = {An extension of the method of quasilinearization},
     journal = {Archivum mathematicum},
     pages = {201--208},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {2010721},
     zbl = {1116.34304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/}
}
TY  - JOUR
AU  - Jankowski, Tadeusz
TI  - An extension of the method of quasilinearization
JO  - Archivum mathematicum
PY  - 2003
SP  - 201
EP  - 208
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/
LA  - en
ID  - ARM_2003_39_3_a5
ER  - 
%0 Journal Article
%A Jankowski, Tadeusz
%T An extension of the method of quasilinearization
%J Archivum mathematicum
%D 2003
%P 201-208
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/
%G en
%F ARM_2003_39_3_a5
Jankowski, Tadeusz. An extension of the method of quasilinearization. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 201-208. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a5/

[1] Bellman, R.: Methods of Nonlinear Analysis. Vol. II, Academic Press, New York 1973. | MR | Zbl

[2] Bellman, R. and Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York 1965. | MR

[3] Jankowski, T. and Lakshmikantham, V.: Monotone iterations for differential equations with a parameter. J. Appl. Math. Stoch. Anal. 10 (1997), 273–278. | MR

[4] Jankowski, T. and McRae, F. A.: An extension of the method of quasilinearization for differential problems with a parameter. Nonlinear Stud. 6 (1999), 21–44. | MR

[5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman 1985. | MR

[6] Lakshmikantham, V. and Malek, S.: Generalized quasilenearization. Nonlinear World 1 (1994), 59–63. | MR

[7] Lakshmikantham, V., Leela, S. and Sivasundaram, S.: Extensions of the Method of Quasilinearization. J. Optimization Theory Appl. Vol. 87 (1995), 379–401. | MR

[8] Lakshmikantham, V. and Vatsala, A. S.: Generalized Quasilinearization for Nonlinear Problems. Kluwer Academic Publishers, Dordrecht 1998. | MR

[9] Lakshmikantham, V., Leela, S. and McRae, F. A.: Improved Generalized Quasilinearization Method. Nonlinear Analysis 24 (1995), 1627–1637. | MR

[10] Lakshmikantham, V. and Shahzad, N.: Further Generalization of Generalized Quasilinearization Method. J. Appl. Math. Stoch. Anal. 7 (1994), 545–552. | MR

[11] Shahzad, N. and Vatsala, A. S.: An Extension of the Method of Generalized Quasilinearization for Second Order Boundary Value Problems. Appl. Anal. 58 (1995), 77–83. | MR