Keywords: commutativity; Drazin inverse; Moore-Penrose inverse; rank equality; matrix expression
@article{ARM_2003_39_3_a4,
author = {Tian, Yongge},
title = {How to characterize commutativity equalities for {Drazin} inverses of matrices},
journal = {Archivum mathematicum},
pages = {191--199},
year = {2003},
volume = {39},
number = {3},
mrnumber = {2010720},
zbl = {1122.15300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/}
}
Tian, Yongge. How to characterize commutativity equalities for Drazin inverses of matrices. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/
[1] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications. Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. | MR | Zbl
[2] Campbell S. L., Meyer C. D.: EP operators and generalized inverses. Canad. Math. Bull. 18 (1975), 327–333. | MR | Zbl
[3] Campbell S. L., Meyer C. D.: Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. | MR | Zbl
[4] Castro N., Koliha J. J.: Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106. | MR | Zbl
[5] Castro N., Koliha J. J., Wei Y.: Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl. 312 (2000), 181–189. | MR | Zbl
[6] Hartwig R. E., Spindelböck K.: Partial isometries, contractions and EP matrices. Linear and Multilinear Algebra 13 (1983), 295–310. | MR | Zbl
[7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute. Linear and Multilinear Algebra 14 (1984), 241–256.
[8] Koliha J. J.: Elements of $C^*$-algebras commuting with their Moore-Penrose inverse. Studia Math. 139 (2000), 81–90. | MR | Zbl
[9] Marsaglia G., Styan G. P. H.: Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra 2 (1974), 269–292. | MR | Zbl
[10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York, 1971. | MR | Zbl
[11] Tian Y.: How to characterize equalities for the Moore-Penrose inverse of a matrix. Kyungpook Math. J. 41 (2001), 1–15. | MR | Zbl
[12] Wong E. T.: Does the generalized inverse of $A$ commute with $A$?. Math. Mag. 59 (1986), 230–232. | MR | Zbl