How to characterize commutativity equalities for Drazin inverses of matrices
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 191-199 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined.
Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined.
Classification : 15A03, 15A09, 15A27
Keywords: commutativity; Drazin inverse; Moore-Penrose inverse; rank equality; matrix expression
@article{ARM_2003_39_3_a4,
     author = {Tian, Yongge},
     title = {How to characterize commutativity equalities for {Drazin} inverses of matrices},
     journal = {Archivum mathematicum},
     pages = {191--199},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {2010720},
     zbl = {1122.15300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/}
}
TY  - JOUR
AU  - Tian, Yongge
TI  - How to characterize commutativity equalities for Drazin inverses of matrices
JO  - Archivum mathematicum
PY  - 2003
SP  - 191
EP  - 199
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/
LA  - en
ID  - ARM_2003_39_3_a4
ER  - 
%0 Journal Article
%A Tian, Yongge
%T How to characterize commutativity equalities for Drazin inverses of matrices
%J Archivum mathematicum
%D 2003
%P 191-199
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/
%G en
%F ARM_2003_39_3_a4
Tian, Yongge. How to characterize commutativity equalities for Drazin inverses of matrices. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a4/

[1] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications. Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. | MR | Zbl

[2] Campbell S. L., Meyer C. D.: EP operators and generalized inverses. Canad. Math. Bull. 18 (1975), 327–333. | MR | Zbl

[3] Campbell S. L., Meyer C. D.: Generalized Inverses of Linear Transformations. Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. | MR | Zbl

[4] Castro N., Koliha J. J.: Perturbation of the Drazin inverse for closed linear operators. Integral Equations Operator Theory 36 (2000), 92–106. | MR | Zbl

[5] Castro N., Koliha J. J., Wei Y.: Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl. 312 (2000), 181–189. | MR | Zbl

[6] Hartwig R. E., Spindelböck K.: Partial isometries, contractions and EP matrices. Linear and Multilinear Algebra 13 (1983), 295–310. | MR | Zbl

[7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute. Linear and Multilinear Algebra 14 (1984), 241–256.

[8] Koliha J. J.: Elements of $C^*$-algebras commuting with their Moore-Penrose inverse. Studia Math. 139 (2000), 81–90. | MR | Zbl

[9] Marsaglia G., Styan G. P. H.: Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra 2 (1974), 269–292. | MR | Zbl

[10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York, 1971. | MR | Zbl

[11] Tian Y.: How to characterize equalities for the Moore-Penrose inverse of a matrix. Kyungpook Math. J. 41 (2001), 1–15. | MR | Zbl

[12] Wong E. T.: Does the generalized inverse of $A$ commute with $A$?. Math. Mag. 59 (1986), 230–232. | MR | Zbl