On the powerful part of $n\sp 2+1$
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 187-189
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.
We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.
@article{ARM_2003_39_3_a3,
author = {Puchta, Jan-Christoph},
title = {On the powerful part of $n\sp 2+1$},
journal = {Archivum mathematicum},
pages = {187--189},
year = {2003},
volume = {39},
number = {3},
mrnumber = {2010719},
zbl = {1122.11311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a3/}
}
Puchta, Jan-Christoph. On the powerful part of $n\sp 2+1$. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 187-189. http://geodesic.mathdoc.fr/item/ARM_2003_39_3_a3/
[1] Evertse J.-H., Silverman J. H.: Uniform bounds for the number of solutions to $Y^n=f(X)$. Math. Proc. Camb. Philos. Soc. 100 (1986), 237–248. | MR
[2] Heath-Brown D. R.: Review 651.10012. Zentralblatt Mathematik 651, 41 (1989) | MR
[3] Mardjanichvili C.: Estimation d’une somme arithmetique. Dokl. Acad. Sci. SSSR 22 (1939), 387–389. | Zbl
[4] Ribenboim P.: Remarks on exponential congruences and powerful numbers. J. Number Theory 29 (1988), 251–263. | MR | Zbl