Keywords: initial value problem; impulsive functional differential inclusions; convex multivalued map; fixed point; mild solution
@article{ARM_2003_39_2_a3,
author = {Benchohra, M. and Henderson, J. and Ntouyas, Sotiris K.},
title = {On first order impulsive semilinear functional differential inclusions},
journal = {Archivum mathematicum},
pages = {129--139},
year = {2003},
volume = {39},
number = {2},
mrnumber = {1994569},
zbl = {1116.34342},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/}
}
TY - JOUR AU - Benchohra, M. AU - Henderson, J. AU - Ntouyas, Sotiris K. TI - On first order impulsive semilinear functional differential inclusions JO - Archivum mathematicum PY - 2003 SP - 129 EP - 139 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/ LA - en ID - ARM_2003_39_2_a3 ER -
Benchohra, M.; Henderson, J.; Ntouyas, Sotiris K. On first order impulsive semilinear functional differential inclusions. Archivum mathematicum, Tome 39 (2003) no. 2, pp. 129-139. http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/
[1] Agur, Z., Cojocaru, L., Mazur, G., Anderson, R. M. and Danon, Y. L.: Pulse mass measles vaccination across age cohorts. Proc. Nat. Acad. Sci. USA 90 (1993), 11698–11702.
[2] Banas, J. and Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980. | MR
[3] Corduneanu, C.: Integral Equations and Applications. Cambridge Univ. Press, New York, 1990. | MR | Zbl
[4] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin, 1992. | MR | Zbl
[5] Dugundji, J. and Granas, A.: Fixed Point Theory. Monografie Mat. PWN, Warsaw, 1982. | MR
[6] Erbe, L., Freedman, H. I., Liu, X. Z. and Wu, J. H.: Comparison principles for impulsive parabolic equations with applications to models of singles species growth. J. Austral. Math. Soc. Ser. B 32 (1991), 382–400. | MR
[7] Goldbeter, A., Li, Y. X. and Dupont, G.: Pulsatile signalling in intercellular communication: Experimental and theoretical aspects. Mathematics applied to Biology and Medicine, Werz. Pub. Winnipeg, Canada (1993), 429–439.
[8] Hu, Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, Boston, London, 1997. | MR
[9] Kirane, M. and Rogovchenko, Y. V.: Comparison results for systems of impulsive parabolic equations with applications to population dynamics. Nonlinear Anal. 28 (1997), 263–276. | MR
[10] Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. | MR
[11] Lasota, A. and Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Polish Acad. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR
[12] Liu, X., Sivaloganathan, S. and Zhang, S.: Monotone iterative techniques for time-dependent problems with applications. J. Math. Anal. Appl. 237 (1999), 1–18. | MR
[13] Liu, X. and Zhang, S.: A cell population model described by impulsive PDEs-Existence and numerical approximation. Comput. Math. Appl. 36 (8) (1998), 1–11. | MR
[14] Martelli, M.: A Rothe’s type theorem for non compact acyclic-valued maps. Boll. Un. Mat. Ital. 11 (Suppl. Fasc.) (1975), 70–76. | MR | Zbl
[15] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. | MR | Zbl
[16] Samoilenko, A. M. and Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR
[17] Yosida, K.: Functional Analysis. $6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. | MR | Zbl