On first order impulsive semilinear functional differential inclusions
Archivum mathematicum, Tome 39 (2003) no. 2, pp. 129-139
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper the Leray-Schauder nonlinear alternative for multivalued maps combined with the semigroup theory is used to investigate the existence of mild solutions for first order impulsive semilinear functional differential inclusions in Banach spaces.
In this paper the Leray-Schauder nonlinear alternative for multivalued maps combined with the semigroup theory is used to investigate the existence of mild solutions for first order impulsive semilinear functional differential inclusions in Banach spaces.
Classification : 34A60, 34G25, 34K30, 34K45, 35K45, 35R10
Keywords: initial value problem; impulsive functional differential inclusions; convex multivalued map; fixed point; mild solution
@article{ARM_2003_39_2_a3,
     author = {Benchohra, M. and Henderson, J. and Ntouyas, Sotiris K.},
     title = {On first order impulsive semilinear functional differential inclusions},
     journal = {Archivum mathematicum},
     pages = {129--139},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1994569},
     zbl = {1116.34342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/}
}
TY  - JOUR
AU  - Benchohra, M.
AU  - Henderson, J.
AU  - Ntouyas, Sotiris K.
TI  - On first order impulsive semilinear functional differential inclusions
JO  - Archivum mathematicum
PY  - 2003
SP  - 129
EP  - 139
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/
LA  - en
ID  - ARM_2003_39_2_a3
ER  - 
%0 Journal Article
%A Benchohra, M.
%A Henderson, J.
%A Ntouyas, Sotiris K.
%T On first order impulsive semilinear functional differential inclusions
%J Archivum mathematicum
%D 2003
%P 129-139
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/
%G en
%F ARM_2003_39_2_a3
Benchohra, M.; Henderson, J.; Ntouyas, Sotiris K. On first order impulsive semilinear functional differential inclusions. Archivum mathematicum, Tome 39 (2003) no. 2, pp. 129-139. http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a3/

[1] Agur, Z., Cojocaru, L., Mazur, G., Anderson, R. M. and Danon, Y. L.: Pulse mass measles vaccination across age cohorts. Proc. Nat. Acad. Sci. USA 90 (1993), 11698–11702.

[2] Banas, J. and Goebel, K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980. | MR

[3] Corduneanu, C.: Integral Equations and Applications. Cambridge Univ. Press, New York, 1990. | MR | Zbl

[4] Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin, 1992. | MR | Zbl

[5] Dugundji, J. and Granas, A.: Fixed Point Theory. Monografie Mat. PWN, Warsaw, 1982. | MR

[6] Erbe, L., Freedman, H. I., Liu, X. Z. and Wu, J. H.: Comparison principles for impulsive parabolic equations with applications to models of singles species growth. J. Austral. Math. Soc. Ser. B 32 (1991), 382–400. | MR

[7] Goldbeter, A., Li, Y. X. and Dupont, G.: Pulsatile signalling in intercellular communication: Experimental and theoretical aspects. Mathematics applied to Biology and Medicine, Werz. Pub. Winnipeg, Canada (1993), 429–439.

[8] Hu, Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, Boston, London, 1997. | MR

[9] Kirane, M. and Rogovchenko, Y. V.: Comparison results for systems of impulsive parabolic equations with applications to population dynamics. Nonlinear Anal. 28 (1997), 263–276. | MR

[10] Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. | MR

[11] Lasota, A. and Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull. Polish Acad. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR

[12] Liu, X., Sivaloganathan, S. and Zhang, S.: Monotone iterative techniques for time-dependent problems with applications. J. Math. Anal. Appl. 237 (1999), 1–18. | MR

[13] Liu, X. and Zhang, S.: A cell population model described by impulsive PDEs-Existence and numerical approximation. Comput. Math. Appl. 36 (8) (1998), 1–11. | MR

[14] Martelli, M.: A Rothe’s type theorem for non compact acyclic-valued maps. Boll. Un. Mat. Ital. 11 (Suppl. Fasc.) (1975), 70–76. | MR | Zbl

[15] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. | MR | Zbl

[16] Samoilenko, A. M. and Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR

[17] Yosida, K.: Functional Analysis. $6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. | MR | Zbl