On the convergence of the Ishikawa iterates to a common fixed point of two mappings
Archivum mathematicum, Tome 39 (2003) no. 2, pp. 123-127
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C$ be a convex subset of a complete convex metric space $X$, and $S$ and $T$ be two selfmappings on $C$. In this paper it is shown that if the sequence of Ishikawa iterations associated with $S$ and $T$ converges, then its limit point is the common fixed point of $S$ and $T$. This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].
Let $C$ be a convex subset of a complete convex metric space $X$, and $S$ and $T$ be two selfmappings on $C$. In this paper it is shown that if the sequence of Ishikawa iterations associated with $S$ and $T$ converges, then its limit point is the common fixed point of $S$ and $T$. This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].
Classification : 47H10, 47J25, 54H25
Keywords: Ishikawa iterates; comon fixed point; convex metric space
@article{ARM_2003_39_2_a2,
     author = {\'Ciri\'c, Lj. B. and Ume, J. S. and Khan, M. S.},
     title = {On the convergence of the {Ishikawa} iterates to a common fixed point of two mappings},
     journal = {Archivum mathematicum},
     pages = {123--127},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1994568},
     zbl = {1109.47312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a2/}
}
TY  - JOUR
AU  - Ćirić, Lj. B.
AU  - Ume, J. S.
AU  - Khan, M. S.
TI  - On the convergence of the Ishikawa iterates to a common fixed point of two mappings
JO  - Archivum mathematicum
PY  - 2003
SP  - 123
EP  - 127
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a2/
LA  - en
ID  - ARM_2003_39_2_a2
ER  - 
%0 Journal Article
%A Ćirić, Lj. B.
%A Ume, J. S.
%A Khan, M. S.
%T On the convergence of the Ishikawa iterates to a common fixed point of two mappings
%J Archivum mathematicum
%D 2003
%P 123-127
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a2/
%G en
%F ARM_2003_39_2_a2
Ćirić, Lj. B.; Ume, J. S.; Khan, M. S. On the convergence of the Ishikawa iterates to a common fixed point of two mappings. Archivum mathematicum, Tome 39 (2003) no. 2, pp. 123-127. http://geodesic.mathdoc.fr/item/ARM_2003_39_2_a2/

[1] Ćirić, Lj. B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. | MR

[2] Ćirić, Lj. B.: Quasi-contractions in Banach spaces. Publ. Inst. Math. 21 (1977), 41–48. | MR

[3] Hichs, L. and Kubicek, J. D.: On the Mann iteration process in Hilbert spaces. J. Math. Anal. Appl. 59 (1977), 498–504. | MR

[4] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | MR | Zbl

[5] Mann, W. R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953), 506–510. | MR | Zbl

[6] Naimpally, S. A. and Singh, K. L.: Extensions of some fixed point theorems of Rhoades. J. Math. Anal. Appl. 96 (1983), 437–446. | MR

[7] Rhoades, B. E.: Fixed point iterations using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. | MR | Zbl

[8] Rhoades, B. E.: A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257–290. | MR | Zbl

[9] Rhoades, B. E.: Extension of some fixed point theorems of Ćirić, Maiti and Pal. Math. Sem. Notes Kobe Univ. 6 (1978), 41–46. | MR

[10] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56 (1976), 741–750. | MR | Zbl

[11] Singh, K. L.: Fixed point iteration using infinite matrices. In “Applied Nonlinear Analysis” (V. Lakshmikantham, Ed.), pp.689–703, Academic Press, New York, 1979. | MR

[12] Singh, K. L.: Generalized contractions and the sequence of iterates. In “Nonlinear Equations in Abstract Spaces” (V. Lakshmikantham, Ed.), pp. 439–462, Academic Press, New York, 1978. | MR

[13] Takahashi, W.: A convexity in metric spaces and nonexpansive mappings. Kodai Math. Sem. Rep. 22 (1970), 142–149. | MR