Natural operators in the view of Cartan geometries
Archivum mathematicum, Tome 39 (2003) no. 1, pp. 57-75 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove, that $r$-th order gauge natural operators on the bundle of Cartan connections with a target in the gauge natural bundles of the order $(1,0)$ (“tensor bundles”) factorize through the curvature and its invariant derivatives up to order $r-1$. On the course to this result we also prove that the invariant derivations (a generalization of the covariant derivation for Cartan geometries) of the curvature function of a Cartan connection have the tensor character. A modification of the theorem is given for the reductive and torsion free geometries.
We prove, that $r$-th order gauge natural operators on the bundle of Cartan connections with a target in the gauge natural bundles of the order $(1,0)$ (“tensor bundles”) factorize through the curvature and its invariant derivatives up to order $r-1$. On the course to this result we also prove that the invariant derivations (a generalization of the covariant derivation for Cartan geometries) of the curvature function of a Cartan connection have the tensor character. A modification of the theorem is given for the reductive and torsion free geometries.
Classification : 53A55, 58A20, 58A32
Keywords: Cartan geometry; gauge natural bundle; natural operator; natural sheaf; reductive Cartan geometry
@article{ARM_2003_39_1_a5,
     author = {Pan\'ak, Martin},
     title = {Natural operators in the view of {Cartan} geometries},
     journal = {Archivum mathematicum},
     pages = {57--75},
     year = {2003},
     volume = {39},
     number = {1},
     mrnumber = {1982212},
     zbl = {1112.58301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003_39_1_a5/}
}
TY  - JOUR
AU  - Panák, Martin
TI  - Natural operators in the view of Cartan geometries
JO  - Archivum mathematicum
PY  - 2003
SP  - 57
EP  - 75
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2003_39_1_a5/
LA  - en
ID  - ARM_2003_39_1_a5
ER  - 
%0 Journal Article
%A Panák, Martin
%T Natural operators in the view of Cartan geometries
%J Archivum mathematicum
%D 2003
%P 57-75
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2003_39_1_a5/
%G en
%F ARM_2003_39_1_a5
Panák, Martin. Natural operators in the view of Cartan geometries. Archivum mathematicum, Tome 39 (2003) no. 1, pp. 57-75. http://geodesic.mathdoc.fr/item/ARM_2003_39_1_a5/

[CS] Čap, A., Slovák, J.: Infinitesimally natural operators are natural. Differential Geometry and its Applications 2 (1992) 45–55. | MR

[CSS] Čap, A., Souček, V., Slovák, J.: Almost Hermitian Symmetric Structures I. (1994), ESI preprint.

[Eck] Eck D. J.: Natural sheaves. Illinois J. Math. 31 (1987), 200–207. | MR | Zbl

[K] Kobayashi, S.: Transformation groups in differential geometry. Springer, 1972. | MR | Zbl

[KM] Kriegel, A., Michor, P. W.: The convenient setting of global analysis. AMS, SURV 53. 1997.

[KMS] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer, Berlin New York, 1993. | MR

[KN] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience Publishers, New York, London, 1963. | MR

[P] Panák, M.: Natural operators on the bundle of Cartan connections. Proceedings of the Conference Differential Geometry and Applications, Brno, 1998, 285–292. | MR

[S] Sharpe, R W.: Differential geometry. Springer, New York-Berlin-Heidelberg, 1997. | MR | Zbl