Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations
Archivum mathematicum, Tome 38 (2002) no. 4, pp. 311-317 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper the fourth order nonlinear differential equation $y^{(4)}+(q(t)y^{\prime })^{\prime }+r(t)f(y)=0$, where $q\in C^{1}( [0,\infty ))$, $r\in C^{0}( [0,\infty ))$, $f\in C^{0}(R)$, $r\ge 0$ and $f(x)x>0$ for $x\ne 0$ is considered. We investigate the asymptotic behaviour of nonoscillatory solutions and give sufficient conditions under which all nonoscillatory solutions either are unbounded or tend to zero for $t\rightarrow \infty $.
In the paper the fourth order nonlinear differential equation $y^{(4)}+(q(t)y^{\prime })^{\prime }+r(t)f(y)=0$, where $q\in C^{1}( [0,\infty ))$, $r\in C^{0}( [0,\infty ))$, $f\in C^{0}(R)$, $r\ge 0$ and $f(x)x>0$ for $x\ne 0$ is considered. We investigate the asymptotic behaviour of nonoscillatory solutions and give sufficient conditions under which all nonoscillatory solutions either are unbounded or tend to zero for $t\rightarrow \infty $.
Classification : 34C10, 34D05
Keywords: the fourth order differential equation; nonoscillatory solution
@article{ARM_2002_38_4_a7,
     author = {Sobalov\'a, Monika},
     title = {Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations},
     journal = {Archivum mathematicum},
     pages = {311--317},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1942661},
     zbl = {1090.34028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a7/}
}
TY  - JOUR
AU  - Sobalová, Monika
TI  - Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations
JO  - Archivum mathematicum
PY  - 2002
SP  - 311
EP  - 317
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a7/
LA  - en
ID  - ARM_2002_38_4_a7
ER  - 
%0 Journal Article
%A Sobalová, Monika
%T Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations
%J Archivum mathematicum
%D 2002
%P 311-317
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a7/
%G en
%F ARM_2002_38_4_a7
Sobalová, Monika. Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 311-317. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a7/

[1] Bartušek M., Sobalová M.: On Nonoscillatory solutions of the 4th Order Differential Equations. Dynam. Syst. Appl., Proceedings of Dynam. Systems and Applications 3 (2001), 61–68.

[2] Cecchi M., Došlá Z., Marini M.: On Third Order Differential Equations with Property A and B. J. Math. Anal. Appl. 231 (1999), 509–525. | MR | Zbl

[3] Kiguradze I.: An Oscillation Criterion for a Class of Ordinary Differential Equations. Differ. Uravn., Vol. 28, No 2 (1992), 207–219. | MR | Zbl

[4] Kiguradze I. T., Chanturia T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow (1990) (in Russian).

[5] Škerlík A.: Oscillation Theorems for Third Order Nonlinear Differential Equations. Math. Slovaca 42 (1992), 471–484. | MR | Zbl