Keywords: Ricci curvature; totally real submanifolds; quaternion projective space
@article{ARM_2002_38_4_a5,
author = {Liu, Ximin},
title = {On {Ricci} curvature of totally real submanifolds in a quaternion projective space},
journal = {Archivum mathematicum},
pages = {297--305},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1942659},
zbl = {1090.53052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a5/}
}
Liu, Ximin. On Ricci curvature of totally real submanifolds in a quaternion projective space. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 297-305. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a5/
[1] Chen B. Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568–578. | MR | Zbl
[2] Chen B. Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension. Glasgow Math. J. 41 (1999), 33–41. | MR
[3] Chen B. Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms. Arch. Math. 74 (2000), 154–160. | MR
[4] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: Totally real submanifolds of $CP^n$ satisfying a basic equality. Arch. Math. 63 (1994), 553–564. | MR
[5] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: An exotic totally real minimal immersion of $S^3$ and $CP^3$ and its characterization. Proc. Royal Soc. Edinburgh, Sect. A, Math. 126 (1996), 153–165. | MR | Zbl
[6] Chen B. Y., Houh C. S.: Totally real submanifolds of a quaternion projective space. Ann. Mat. Pura Appl. 120 (1979), 185–199. | MR | Zbl
[7] Ishihara S.: Quaternion Kaehlerian manifolds. J. Differential Geom. 9 (1974), 483–500. | MR | Zbl