Existence of two solutions for quasilinear periodic differential equations with discontinuities
Archivum mathematicum, Tome 38 (2002) no. 4, pp. 285-296
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we examine a quasilinear periodic problem driven by the one- dimensional $p$-Laplacian and with discontinuous forcing term $f$. By filling in the gaps at the discontinuity points of $f$ we pass to a multivalued periodic problem. For this second order nonlinear periodic differential inclusion, using variational arguments, techniques from the theory of nonlinear operators of monotone type and the method of upper and lower solutions, we prove the existence of at least two non trivial solutions, one positive, the other negative.
In this paper we examine a quasilinear periodic problem driven by the one- dimensional $p$-Laplacian and with discontinuous forcing term $f$. By filling in the gaps at the discontinuity points of $f$ we pass to a multivalued periodic problem. For this second order nonlinear periodic differential inclusion, using variational arguments, techniques from the theory of nonlinear operators of monotone type and the method of upper and lower solutions, we prove the existence of at least two non trivial solutions, one positive, the other negative.
Classification :
34A36, 34B15, 34C25
Keywords: one dimensional $p$-Laplacian; maximal monotone operator; pseudomonotone operator; generalized pseudomonotonicity; coercive operator; first nonzero eigenvalue; upper solution; lower solution; truncation map; penalty function; multiplicity result
Keywords: one dimensional $p$-Laplacian; maximal monotone operator; pseudomonotone operator; generalized pseudomonotonicity; coercive operator; first nonzero eigenvalue; upper solution; lower solution; truncation map; penalty function; multiplicity result
@article{ARM_2002_38_4_a4,
author = {Papageorgiou, Nikolaos S. and Papalini, Francesca},
title = {Existence of two solutions for quasilinear periodic differential equations with discontinuities},
journal = {Archivum mathematicum},
pages = {285--296},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1942658},
zbl = {1090.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. AU - Papalini, Francesca TI - Existence of two solutions for quasilinear periodic differential equations with discontinuities JO - Archivum mathematicum PY - 2002 SP - 285 EP - 296 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/ LA - en ID - ARM_2002_38_4_a4 ER -
%0 Journal Article %A Papageorgiou, Nikolaos S. %A Papalini, Francesca %T Existence of two solutions for quasilinear periodic differential equations with discontinuities %J Archivum mathematicum %D 2002 %P 285-296 %V 38 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/ %G en %F ARM_2002_38_4_a4
Papageorgiou, Nikolaos S.; Papalini, Francesca. Existence of two solutions for quasilinear periodic differential equations with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 285-296. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/