Keywords: one dimensional $p$-Laplacian; maximal monotone operator; pseudomonotone operator; generalized pseudomonotonicity; coercive operator; first nonzero eigenvalue; upper solution; lower solution; truncation map; penalty function; multiplicity result
@article{ARM_2002_38_4_a4,
author = {Papageorgiou, Nikolaos S. and Papalini, Francesca},
title = {Existence of two solutions for quasilinear periodic differential equations with discontinuities},
journal = {Archivum mathematicum},
pages = {285--296},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1942658},
zbl = {1090.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. AU - Papalini, Francesca TI - Existence of two solutions for quasilinear periodic differential equations with discontinuities JO - Archivum mathematicum PY - 2002 SP - 285 EP - 296 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/ LA - en ID - ARM_2002_38_4_a4 ER -
%0 Journal Article %A Papageorgiou, Nikolaos S. %A Papalini, Francesca %T Existence of two solutions for quasilinear periodic differential equations with discontinuities %J Archivum mathematicum %D 2002 %P 285-296 %V 38 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/ %G en %F ARM_2002_38_4_a4
Papageorgiou, Nikolaos S.; Papalini, Francesca. Existence of two solutions for quasilinear periodic differential equations with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 285-296. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/
[1] Ahmad S., Lazer A.: Critical point theory and a theorem of Amaral and Pera. Bollettino U.M.I. 6 (1984), 583–598. | MR | Zbl
[2] Boccardo L., Drábek P., Giacchetti D., Kučera M.: Generalization of Fredholm alternative for some nonlinear boundary value problem. Nonlinear Anal. T.M.A. 10 (1986), 1083–1103. | MR
[3] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48. | MR
[4] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray Schauder degree result and existence for $(| u^{\prime } |^{p-2}u^{\prime })^{\prime }+ f(t,u)=0, u(0)=u(T)=0, p>1^*$. J. Differential Equations 80 (1989), 1–13. | MR | Zbl
[5] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e. Nonlinear Anal. T.M.A. 18 (1992), 79–92. | MR | Zbl
[6] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Istit. Mat. Univ. Trieste 8 (1986), 105–124. | MR
[7] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR | Zbl
[8] Fabry C., Mawhin J., Nkashama M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173–180. | MR | Zbl
[9] Fonda A., Lupo D.: Periodic solutions of second order ordinary differential differential equations. Bollettino U.M.I. 7 (1989), 291–299. | MR
[10] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977). | MR | Zbl
[11] Gossez J.-P., Omari P.: A note on periodic solutions for second order ordinary differential equation. Bollettino U.M.I. 7 (1991), 223–231.
[12] Guo Z.: Boundary value problems of a class of quasilinear differential equations. Diff. Integral Equations 6 (1993), 705–719. | MR
[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997). | MR | Zbl
[14] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume II: Applications. Kluwer, Dordrecht, The Netherlands (2000). | MR | Zbl
[15] Kesavan S.: Topics in Functional Analysis and Applications. Wiley, New York (1989). | MR | Zbl
[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 145 (1998), 367–393. | MR
[17] Mawhin J., Willem M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differential Equations 2 (1984), 264–287. | MR | Zbl
[18] Zeidler E.: Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York (1985). | MR