Existence of two solutions for quasilinear periodic differential equations with discontinuities
Archivum mathematicum, Tome 38 (2002) no. 4, pp. 285-296 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we examine a quasilinear periodic problem driven by the one- dimensional $p$-Laplacian and with discontinuous forcing term $f$. By filling in the gaps at the discontinuity points of $f$ we pass to a multivalued periodic problem. For this second order nonlinear periodic differential inclusion, using variational arguments, techniques from the theory of nonlinear operators of monotone type and the method of upper and lower solutions, we prove the existence of at least two non trivial solutions, one positive, the other negative.
In this paper we examine a quasilinear periodic problem driven by the one- dimensional $p$-Laplacian and with discontinuous forcing term $f$. By filling in the gaps at the discontinuity points of $f$ we pass to a multivalued periodic problem. For this second order nonlinear periodic differential inclusion, using variational arguments, techniques from the theory of nonlinear operators of monotone type and the method of upper and lower solutions, we prove the existence of at least two non trivial solutions, one positive, the other negative.
Classification : 34A36, 34B15, 34C25
Keywords: one dimensional $p$-Laplacian; maximal monotone operator; pseudomonotone operator; generalized pseudomonotonicity; coercive operator; first nonzero eigenvalue; upper solution; lower solution; truncation map; penalty function; multiplicity result
@article{ARM_2002_38_4_a4,
     author = {Papageorgiou, Nikolaos S. and Papalini, Francesca},
     title = {Existence of two solutions for quasilinear periodic differential equations with discontinuities},
     journal = {Archivum mathematicum},
     pages = {285--296},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1942658},
     zbl = {1090.34013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
AU  - Papalini, Francesca
TI  - Existence of two solutions for quasilinear periodic differential equations with discontinuities
JO  - Archivum mathematicum
PY  - 2002
SP  - 285
EP  - 296
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/
LA  - en
ID  - ARM_2002_38_4_a4
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%A Papalini, Francesca
%T Existence of two solutions for quasilinear periodic differential equations with discontinuities
%J Archivum mathematicum
%D 2002
%P 285-296
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/
%G en
%F ARM_2002_38_4_a4
Papageorgiou, Nikolaos S.; Papalini, Francesca. Existence of two solutions for quasilinear periodic differential equations with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 285-296. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a4/

[1] Ahmad S., Lazer A.: Critical point theory and a theorem of Amaral and Pera. Bollettino U.M.I. 6 (1984), 583–598. | MR | Zbl

[2] Boccardo L., Drábek P., Giacchetti D., Kučera M.: Generalization of Fredholm alternative for some nonlinear boundary value problem. Nonlinear Anal. T.M.A. 10 (1986), 1083–1103. | MR

[3] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48. | MR

[4] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray Schauder degree result and existence for $(| u^{\prime } |^{p-2}u^{\prime })^{\prime }+ f(t,u)=0, u(0)=u(T)=0, p>1^*$. J. Differential Equations 80 (1989), 1–13. | MR | Zbl

[5] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e. Nonlinear Anal. T.M.A. 18 (1992), 79–92. | MR | Zbl

[6] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator. Rend. Istit. Mat. Univ. Trieste 8 (1986), 105–124. | MR

[7] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR | Zbl

[8] Fabry C., Mawhin J., Nkashama M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173–180. | MR | Zbl

[9] Fonda A., Lupo D.: Periodic solutions of second order ordinary differential differential equations. Bollettino U.M.I. 7 (1989), 291–299. | MR

[10] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977). | MR | Zbl

[11] Gossez J.-P., Omari P.: A note on periodic solutions for second order ordinary differential equation. Bollettino U.M.I. 7 (1991), 223–231.

[12] Guo Z.: Boundary value problems of a class of quasilinear differential equations. Diff. Integral Equations 6 (1993), 705–719. | MR

[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht, The Netherlands (1997). | MR | Zbl

[14] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume II: Applications. Kluwer, Dordrecht, The Netherlands (2000). | MR | Zbl

[15] Kesavan S.: Topics in Functional Analysis and Applications. Wiley, New York (1989). | MR | Zbl

[16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 145 (1998), 367–393. | MR

[17] Mawhin J., Willem M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differential Equations 2 (1984), 264–287. | MR | Zbl

[18] Zeidler E.: Nonlinear Functional Analysis and its Applications II. Springer-Verlag, New York (1985). | MR