On the minimal displacement of points under mappings
Archivum mathematicum, Tome 38 (2002) no. 4, pp. 273-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
Classification : 47H10, 49J40, 49J50
Keywords: fixed point; minimal displacement; defect of fixed point; best almost-fixed point
@article{ARM_2002_38_4_a3,
     author = {Ban, A. I. and Gal, S. G.},
     title = {On the minimal displacement of points under mappings},
     journal = {Archivum mathematicum},
     pages = {273--284},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1942657},
     zbl = {1068.47069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a3/}
}
TY  - JOUR
AU  - Ban, A. I.
AU  - Gal, S. G.
TI  - On the minimal displacement of points under mappings
JO  - Archivum mathematicum
PY  - 2002
SP  - 273
EP  - 284
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a3/
LA  - en
ID  - ARM_2002_38_4_a3
ER  - 
%0 Journal Article
%A Ban, A. I.
%A Gal, S. G.
%T On the minimal displacement of points under mappings
%J Archivum mathematicum
%D 2002
%P 273-284
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a3/
%G en
%F ARM_2002_38_4_a3
Ban, A. I.; Gal, S. G. On the minimal displacement of points under mappings. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 273-284. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a3/

[1] Barbu V.: Mathematical methods in optimization of differential systems. (in Romanian), Ed. Academiei, Bucharest, 1989. | MR | Zbl

[2] Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353. | MR | Zbl

[3] Ekeland I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 443–474. | MR | Zbl

[4] Engl H. W.: Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers. Nonlinear Anal. 1(5) (1977), 495–501. | MR | Zbl

[5] Ky Fan: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112 (1969), 234–240. | MR | Zbl

[6] Franchetti C.: Lipschitz maps and the geometry of the unit ball in normed spaces. Arch. Math. 46 (1986), 76–84. | MR | Zbl

[7] Furi M., Martelli M.: On the minimal displacement of points under alpha-Lipschitz maps in normed spaces. Bull. Un. Mat. Ital. 9 (1974), 791–799. | MR | Zbl

[8] Goebel K.: On the minimal displacement of points under lipschitzian mappings. Pacific J. Math. 48 (1973), 151–163. | MR | Zbl

[9] Goebel K., Kirk W. A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990. | MR | Zbl

[10] Guay M. D., Singh K. L.: Fixed points of asymptotically regular mappings. Math. Vesnik 35 (1983), 101–106. | MR | Zbl

[11] Kelley J. L.: General Topology. Van Nostrand, New York, 1964. | MR

[12] Rădulescu S., Rădulescu M.: Theorems and Problems in Analysis. (in Romanian), Ed. Didactică şi Pedagogică, Bucharest, 1982.

[13] Reich S.: Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. I, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 59 (1975), 40–44. | MR

[14] Reich S.: Minimal displacement of points under weakly inward pseudo-lipschitzian mappings. II, Atti. Acad. Naz. Linzei Rend. U. Sci. Fis. Mat. Natur. 60 (1976), 95–96. | MR | Zbl

[15] Rhoades B. E., Sessa S., Khan M. S., Swaleh M.: On fixed points of asymptotically regular mappings. J. Austral. Math. Soc. (Series A) 43 (1987), 328–346. | MR | Zbl

[16] Rus I. A.: Principles and Applications of Fixed Point Theory. (in Romanian), Ed. Dacia, Cluj-Napoca, 1979.