On $(\sigma,\tau)$-derivations in prime rings
Archivum mathematicum, Tome 38 (2002) no. 4, pp. 259-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.
Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.
Classification : 16N60, 16U70, 16U80, 16W25
Keywords: prime rings; $(\sigma, \tau )$-derivations; torsion free rings and commutativity
@article{ARM_2002_38_4_a1,
     author = {Ashraf, Mohammad and Nadeem-ur-Rehman},
     title = {On $(\sigma,\tau)$-derivations in prime rings},
     journal = {Archivum mathematicum},
     pages = {259--264},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1942655},
     zbl = {1068.16047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a1/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Nadeem-ur-Rehman
TI  - On $(\sigma,\tau)$-derivations in prime rings
JO  - Archivum mathematicum
PY  - 2002
SP  - 259
EP  - 264
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a1/
LA  - en
ID  - ARM_2002_38_4_a1
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Nadeem-ur-Rehman
%T On $(\sigma,\tau)$-derivations in prime rings
%J Archivum mathematicum
%D 2002
%P 259-264
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a1/
%G en
%F ARM_2002_38_4_a1
Ashraf, Mohammad; Nadeem-ur-Rehman. On $(\sigma,\tau)$-derivations in prime rings. Archivum mathematicum, Tome 38 (2002) no. 4, pp. 259-264. http://geodesic.mathdoc.fr/item/ARM_2002_38_4_a1/

[1] Aydin N., Kaya A.: Some generalization in prime rings with $(\sigma , \tau )$-derivation. Doga Turk. J. Math. 16 (1992), 169–176. | MR

[2] Bell H. E., Martindale W. S.: Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92–101. | MR | Zbl

[3] Bell H. E., Kappe L. C.: Ring in which derivations satisfy certain algebric conditions. Acta Math. Hungar. 53 (1989), 339–346. | MR

[4] Bell H. E., Daif M. N.: On commutativity and strong commutativity preserving maps. Canad. Math. Bull. 37 (1994), 443–447. | MR | Zbl

[5] Bell H. E., Daif M. N.: On derivations and commutativity in prime rings. Acta Math. Hungar. 66 (1995), 337–343. | MR | Zbl

[6] Bresar M.: On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641–649. | MR | Zbl

[7] Bresar M.: Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385–394. | MR | Zbl

[8] Daif M. N., Bell H. E.: Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15 (1992), 205–206. | MR | Zbl

[9] Herstein I. N.: A note on derivations. Canad. Math. Bull. 21 (1978), 369–370. | MR | Zbl

[10] Herstein I. N.: Rings with involution. Univ. Chicago Press, Chicago 1976. | MR | Zbl

[11] Posner E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. | MR

[12] Vukman J.: Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47–52. | MR | Zbl

[13] Vukman J.: Derivations on semiprime rings. Bull. Austral. Math. Soc. 53 (1995), 353–359. | MR