Keywords: coincidence point; fixed point; hybrid fixed points; weak compatibility; multi-valued mappings; asymptotically regular sequence
@article{ARM_2002_38_3_a3,
author = {Pathak, H. K. and Khan, M. S.},
title = {Fixed and coincidence points of hybrid mappings},
journal = {Archivum mathematicum},
pages = {201--208},
year = {2002},
volume = {38},
number = {3},
mrnumber = {1921591},
zbl = {1068.47073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a3/}
}
Pathak, H. K.; Khan, M. S. Fixed and coincidence points of hybrid mappings. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 201-208. http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a3/
[1] Beg, I. and Azam, A.: Fixed point theorems for Kannan mappings. Indian J. Pure and Appl. Math. 17 (11) (1986), 1270–1275. | MR
[2] Beg, I. and Azam, A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. (Series A) 50 (1992), 313–326. | MR
[3] Conley, H. W.: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (2) (1986), 528–532. | MR
[4] Das, K. M. and Naik, K. V.: Common fixed point theorems for commuting maps on a metric space. Proc. Amer. Math. Soc. 77 (1979), 369–373. | MR
[5] Pathak, H. K.: Fixed point theorem for weak compatible multi-valued and single-valued mappings. Acta Math. Hungar. 67 (1-2) (1995), 69–78. | MR
[6] Pathak, H. K., Kang, S. M. and Cho, Y. J.: Coincidence and fixed point theorems for nonlinear hybrid generalized contractions. Czechoslovak Math. J. 48 (123) (1998), 341–357. | MR
[7] Nadler, S. B., Jr.: Multi-valued contraction mappings. Pacific J. Math. 20 (1989), 475–488. | MR | Zbl
[8] Nadler, S. B., Jr.: Hyperspaces of sets. Marcel Dekker, NY, 1978. | MR | Zbl
[9] Shiau, C., Tan, K. K. and Wong, C. S.: A class of quasi-nonexpansive multi-valued maps. Canad. Math. Bull. 18 (1975), 707–714. | MR
[10] Singh, S. L. and Mishra, S. N.: Some remarks on concidencees and fixed points. C. R. Math. Rep. Acad. Sci. Canad. 18 (2-3) (1996), 66–70. | MR
[11] Devaney, R. L.: A first course in chaotic dynamical systems: Theory and experiment. Addison-Wesley 1992. | MR | Zbl