Keywords: multiple solutions; periodic problem; one-dimensional $p$-Laplacian; discontinuous vector field; nonsmooth Palais-Smale condition; locally Lipschitz function; generalized subdifferential; critical point; Saddle Point Theorem; Ekeland variational principle
@article{ARM_2002_38_3_a1,
author = {Papageorgiou, Nikolaos S. and Yannakakis, Nikolaos},
title = {Multiple solutions for nonlinear periodic problems with discontinuities},
journal = {Archivum mathematicum},
pages = {171--182},
year = {2002},
volume = {38},
number = {3},
mrnumber = {1921589},
zbl = {1090.34035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. AU - Yannakakis, Nikolaos TI - Multiple solutions for nonlinear periodic problems with discontinuities JO - Archivum mathematicum PY - 2002 SP - 171 EP - 182 VL - 38 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/ LA - en ID - ARM_2002_38_3_a1 ER -
Papageorgiou, Nikolaos S.; Yannakakis, Nikolaos. Multiple solutions for nonlinear periodic problems with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 171-182. http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/
[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. 10 (1986), 1083–1103. | MR
[2] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | MR | Zbl
[3] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR | Zbl
[4] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48. | MR
[5] De Coster C.: On pairs of positive solutions for the one dimensional $p$-Laplacian. Nonlinear Anal. 23 (1994), 669–681. | MR
[6] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u)=0,\;u(0)=u(T)=0$. J. Differential Equations 80 (1989), 1–13. | MR | Zbl
[7] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode. Nonlinear Anal. 18 (1992), 79–92. | MR
[8] Drábek P., Invernizzi S.: On the periodic bvp for the forced Duffing equation with jumping nonlinearity. Nonlinear Anal. 10 (1986), 643–650. | MR | Zbl
[9] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and assymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR
[10] Fabry C., Mawhin J., Nkashama M.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173–180. | MR | Zbl
[11] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR | Zbl
[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol I: Theory. Kluwer, The Netherlands, 1997. | MR
[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol II: Applications. Kluwer, The Netherlands, 2000. | MR
[14] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. | MR
[15] Papageorgiou N. S., Yannakakis N.: Nonlinear boundary value problems. Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 211–230. | MR | Zbl
[16] Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincarè Non Linèaire 3 (1986), 77–109. | MR | Zbl
[17] Tang C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal. 32 (1998), 299–304. | MR | Zbl
[18] Zhang M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29 (1997), 41–51. | MR | Zbl
[19] Mawhin J. M., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989). | MR | Zbl