Multiple solutions for nonlinear periodic problems with discontinuities
Archivum mathematicum, Tome 38 (2002) no. 3, pp. 171-182 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider a periodic problem driven by the one dimensional $p$-Laplacian and with a discontinuous right hand side. We pass to a multivalued problem, by filling in the gaps at the discontinuity points. Then for the multivalued problem, using the nonsmooth critical point theory, we establish the existence of at least three distinct periodic solutions.
In this paper we consider a periodic problem driven by the one dimensional $p$-Laplacian and with a discontinuous right hand side. We pass to a multivalued problem, by filling in the gaps at the discontinuity points. Then for the multivalued problem, using the nonsmooth critical point theory, we establish the existence of at least three distinct periodic solutions.
Classification : 34A36, 34B15, 34C25, 47J30
Keywords: multiple solutions; periodic problem; one-dimensional $p$-Laplacian; discontinuous vector field; nonsmooth Palais-Smale condition; locally Lipschitz function; generalized subdifferential; critical point; Saddle Point Theorem; Ekeland variational principle
@article{ARM_2002_38_3_a1,
     author = {Papageorgiou, Nikolaos S. and Yannakakis, Nikolaos},
     title = {Multiple solutions for nonlinear periodic problems with discontinuities},
     journal = {Archivum mathematicum},
     pages = {171--182},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1921589},
     zbl = {1090.34035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
AU  - Yannakakis, Nikolaos
TI  - Multiple solutions for nonlinear periodic problems with discontinuities
JO  - Archivum mathematicum
PY  - 2002
SP  - 171
EP  - 182
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/
LA  - en
ID  - ARM_2002_38_3_a1
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%A Yannakakis, Nikolaos
%T Multiple solutions for nonlinear periodic problems with discontinuities
%J Archivum mathematicum
%D 2002
%P 171-182
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/
%G en
%F ARM_2002_38_3_a1
Papageorgiou, Nikolaos S.; Yannakakis, Nikolaos. Multiple solutions for nonlinear periodic problems with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 171-182. http://geodesic.mathdoc.fr/item/ARM_2002_38_3_a1/

[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. 10 (1986), 1083–1103. | MR

[2] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | MR | Zbl

[3] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR | Zbl

[4] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198 (1996), 35–48. | MR

[5] De Coster C.: On pairs of positive solutions for the one dimensional $p$-Laplacian. Nonlinear Anal. 23 (1994), 669–681. | MR

[6] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u)=0,\;u(0)=u(T)=0$. J. Differential Equations 80 (1989), 1–13. | MR | Zbl

[7] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode. Nonlinear Anal. 18 (1992), 79–92. | MR

[8] Drábek P., Invernizzi S.: On the periodic bvp for the forced Duffing equation with jumping nonlinearity. Nonlinear Anal. 10 (1986), 643–650. | MR | Zbl

[9] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and assymetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. | MR

[10] Fabry C., Mawhin J., Nkashama M.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 18 (1986), 173–180. | MR | Zbl

[11] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. | MR | Zbl

[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol I: Theory. Kluwer, The Netherlands, 1997. | MR

[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol II: Applications. Kluwer, The Netherlands, 2000. | MR

[14] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393. | MR

[15] Papageorgiou N. S., Yannakakis N.: Nonlinear boundary value problems. Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 211–230. | MR | Zbl

[16] Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincarè Non Linèaire 3 (1986), 77–109. | MR | Zbl

[17] Tang C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal. 32 (1998), 299–304. | MR | Zbl

[18] Zhang M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29 (1997), 41–51. | MR | Zbl

[19] Mawhin J. M., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989). | MR | Zbl