Keywords: linear functional differential equation; antiperiodic type BVP; solvability and unique solvability
@article{ARM_2002_38_2_a5,
author = {Hakl, R. and Lomtatidze, A. and \v{S}remr, J.},
title = {On an antiperiodic type boundary value problem for first order linear functional differential equations},
journal = {Archivum mathematicum},
pages = {149--160},
year = {2002},
volume = {38},
number = {2},
mrnumber = {1909595},
zbl = {1087.34042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a5/}
}
TY - JOUR AU - Hakl, R. AU - Lomtatidze, A. AU - Šremr, J. TI - On an antiperiodic type boundary value problem for first order linear functional differential equations JO - Archivum mathematicum PY - 2002 SP - 149 EP - 160 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a5/ LA - en ID - ARM_2002_38_2_a5 ER -
%0 Journal Article %A Hakl, R. %A Lomtatidze, A. %A Šremr, J. %T On an antiperiodic type boundary value problem for first order linear functional differential equations %J Archivum mathematicum %D 2002 %P 149-160 %V 38 %N 2 %U http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a5/ %G en %F ARM_2002_38_2_a5
Hakl, R.; Lomtatidze, A.; Šremr, J. On an antiperiodic type boundary value problem for first order linear functional differential equations. Archivum mathematicum, Tome 38 (2002) no. 2, pp. 149-160. http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a5/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the theory of functional differential equations. Nauka, Moscow, 1991, in Russian. | MR | Zbl
[2] Azbelev N. V., Rakhmatullina L. F.: Theory of linear abstract functional differential equations and aplications. Mem. Differential Equations Math. Phys., 8 (1996), 1–102. | MR
[3] Bravyi E.: A note on the Fredholm property of boundary value problems for linear functional differential equations. Mem. Differential Equations Math. Phys. 20 (2000), 133–135. | MR | Zbl
[4] Bravyi E., Hakl R., Lomtatidze A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czechoslovak Math. J., to appear. | MR | Zbl
[5] Bravyi E., Hakl R., Lomtatidze A.: On Cauchy problem for the first order nonlinear functional differential equations of non–Volterra’s type. Czechoslovak Math. J., to appear. | MR
[6] Bravyi E., Lomtatidze A., Půža B.: A note on the theorem on differential inequalities. Georgian Math. J. 7 4 (2000), 627–631. | MR | Zbl
[7] Hakl R.: On some boundary value problems for systems of linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. 10 (1999), 1–16. | MR | Zbl
[8] Hakl R., Kiguradze I., Půža B.: Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. Georgian Math. J. 7 3 (2000), 489–512. | MR
[9] Hakl R., Lomtatidze A.: A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (Brno) 38 1 (2002), 61–71. | MR | Zbl
[10] Hakl R., Lomtatidze A., Půža B.: On a periodic boundary value problem for the first order scalar functional differential equation. J. Math. Anal. Appl., submitted.
[11] Hakl R., Lomtatidze A., Půža B.: On periodic solutions of first order linear functional differential equations. Nonlinear Anal. 49 7 (2002), 929–945. | MR | Zbl
[12] Hakl R., Lomtatidze A., Půža B.: New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohem., to appear. | MR | Zbl
[13] Hakl R., Lomtatidze A., Šremr J. : On an antiperiodic type boundary value problem for first order nonlinear functional differential equations of non–Volterra’s type. Differential Integral Equations, submitted. | Zbl
[14] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order linear functional differential equations. Nonlinear Oscillations, submitted.
[15] Hakl R., Lomtatidze A., Šremr J.: On a periodic type boundary value problem for first order nonlinear functional differential equations. Nonlinear Anal., to appear. | Zbl
[16] Hale J.: Theory of functional differential equations. Springer–Verlag, New York-Heidelberg-Berlin, 1977. | MR | Zbl
[17] Kiguradze I.: On periodic solutions of first order nonlinear differential equations with deviating arguments. Mem. Differential Equations Math. Phys. 10 (1997), 134–137. | Zbl
[18] Kiguradze I.: Initial and boundary value problems for systems of ordinary differential equations I. Metsniereba, Tbilisi, 1997, in Russian. | MR
[19] Kiguradze I., Půža B.: On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47 2 (1997), 341–373. | MR | Zbl
[20] Kiguradze I., Půža B.: On periodic solutions of systems of linear functional differential equations. Arch. Math. (Brno) 33 3 (1997), 197–212. | MR
[21] Kiguradze I., Půža B.: Conti–Opial type theorems for systems of functional differential equations. Differentsial’nye Uravneniya 33 2 (1997), 185–194, in Russian. | MR
[22] Kiguradze I., Půža B.: On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106–113. | MR | Zbl
[23] Kiguradze I., Půža B.: On periodic solutions of nonlinear functional differential equations. Georgian Math. J. 6 1 (1999), 47–66. | MR
[24] Kiguradze I., Půža B.: On periodic solutions of systems of differential equations with deviating arguments. Nonlinear Anal. 42 2 (2000), 229–242. | MR
[25] Kolmanovskii V., Myshkis A.: Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers, 1999. | MR | Zbl
[26] Mawhin J.: Periodic solutions of nonlinear functional differential equations. J. Differential Equations 10 (1971), 240–261. | MR | Zbl
[27] Schwabik S., Tvrdý M., Vejvoda O.: Differential and integral equations: boundary value problems and adjoints. Academia, Praha, 1979. | MR | Zbl