Keywords: nonlinear boundary value problem; existence; lower and upper functions; $\alpha $-condensing operator; Borsuk antipodal theorem; Leray-Schauder degree; homotopy
@article{ARM_2002_38_2_a4,
author = {Stan\v{e}k, Svatoslav},
title = {On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$},
journal = {Archivum mathematicum},
pages = {129--148},
year = {2002},
volume = {38},
number = {2},
mrnumber = {1909594},
zbl = {1087.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a4/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$ JO - Archivum mathematicum PY - 2002 SP - 129 EP - 148 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a4/ LA - en ID - ARM_2002_38_2_a4 ER -
%0 Journal Article %A Staněk, Svatoslav %T On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$ %J Archivum mathematicum %D 2002 %P 129-148 %V 38 %N 2 %U http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a4/ %G en %F ARM_2002_38_2_a4
Staněk, Svatoslav. On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$. Archivum mathematicum, Tome 38 (2002) no. 2, pp. 129-148. http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a4/
[1] Cabada A., Pouso R. L.: Existence results for the problem $(\Phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime })$ with nonlinear boundary conditions. Nonlinear Anal. 35 (1999), 221–231. | MR
[2] Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin Heidelberg, 1985. | MR | Zbl
[3] Kiguradze I. T.: Boundary Value Problems for Systems of Ordinary Differential Equations. In “Current Problems in Mathematics: Newest Results", Vol. 30, 3–103, Moscow 1987 (in Russian); English transl.: J. Soviet Math. 43 (1988), 2340–2417. | MR | Zbl
[4] Kiguradze I. T., Lezhava N. R.: Some nonlinear two-point boundary value problems. Differentsial’nyie Uravneniya 10 (1974), 2147–2161 (in Russian); English transl.: Differ. Equations 10 (1974), 1660–1671. | MR
[5] Kiguradze I. T., Lezhava N. R.: On a nonlinear boundary value problem. Funct. theor. Methods in Differ. Equat., Pitman Publ. London 1976, 259–276. | MR | Zbl
[6] Staněk S.: Two-point functional boundary value problems without growth restrictions. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 37 (1998), 123–142. | MR | Zbl
[7] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions. Pacific. J. Math. 172 (1996), 255–277. | MR | Zbl
[8] Thompson H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions II. Pacific. J. Math. 172 (1996), 279–297. | MR | Zbl
[9] Wang M. X., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58 (1993), 221–235. | MR | Zbl